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Abstract

There are many applications in which it is useful to know the position of a device in space
with reasonable accuracy – for instance, navigation, opening apps or displaying information
on a mobile device when it is in a particular area, or displaying targeted advertising. GPS is
a commonly used technology for location, but it does not work effectively indoors, and many
of the most useful applications of location services are indoors. We propose an alternative to
existing indoor positioning systems based on creating a 3D model from images of a building,
then matching feature points in an image taken at the time the position fix is needed to known
locations in that 3D model.

To begin, we created a 3D model of part of the St. Olaf College science building. We took
stereoscopic pairs of images of the building and of calibration images using DSLR cameras and a
tripod. Then we used camera calibration techniques to determine the parameters of the camera
(focal length, translation of the principal point, distortion, etc.). We then estimated the positions
at which the images were taken and their rotations. Finally, we located corners on the images
and found corresponding coordinates for those points in the real 3D space using the building’s
blueprint. By projecting the points between the two spaces, we were able to optimize our model
using numerical optimization techniques with some code written at St. Olaf for this purpose,
based on the Google Ceres framework.

With the model created, it is possible to determine the camera location for an image taken
in the space by finding corners present in the model in that image, then matching them with the
corresponding point in the world coordinate system. This technique appears to have the potential
to offer higher precision than most existing IPS systems without requiring the installation of
complex and expensive equipment.

1 Introduction

There are many applications in which it is useful
to know the position of a device in space with
reasonable accuracy – for instance, navigation,
opening apps or displaying information on a mo-
bile device when it is in a particular area, or
displaying targeted advertising. GPS is a com-
monly used technology for location, but it does
not work effectively indoors, and many of the
most useful applications of location services are
indoors. We propose an alternative to existing in-
door positioning systems based on creating a 3D
model from images and a blueprint of a building,

then matching feature points in an image taken
at the time the position fix is needed to known
locations in that 3D model.

2 Background

2.1 GPS and IPS

GPS (Global Positioning System) is a collection
of satellites that orbit around the Earth, provid-
ing estimates of a users current location. These
satellites broadcast information from space to
the users GPS device, and using four of these
satellites, the users position can be triangulated.
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In total, thirty-one satellites have been launched
by the United States and the Air Force to ensure
that GPS is available at least 95% of the time
[8]. However, the accuracy of GPS may not be
what is required for some users. Various services
called augmentation systems have also been de-
veloped to improve accuracy and availability with
regard to positioning, navigation, and timing [1].
Together, these systems and GPS can give infor-
mation about a user’s position with remarkable
accuracy.

Unfortunately, GPS has a difficult time track-
ing users that are indoors for several reasons,
including that metal completely blocks the sig-
nal and that it is difficult to have a clear line of
sight between a users position and the satellites
[5]. Therefore, IPS (Indoor Positioning Systems)
have been developed. Instead of relying on satel-
lites, these systems use a variety of other inputs,
including Wi-Fi fingerprints (looking up nearby
Wi-Fi routers in a database of positions) [6], de-
vice accelerometers, altimeters, camera images,
Bluetooth, and other sources of location and mo-
tion information. Often several are integrated
into one system for greater precision.

2.2 Camera Calibration

Existing IPS systems based on radio waves, in-
frared light, or ultrasound either have relatively
low accuracy or require special, expensive infras-
tructure. Camera calibration offers an alternative
approach to finding a precise location inside a
building.

Camera calibration is a mathematical tech-
nique used to determine the extent to which cam-
eras distort and transform 3D space as they create
2D images, and to condense these distortions to
a set of camera parameters. Given the camera
parameters, and knowing the cameras position,
it is possible to accurately project any point in
3D space onto a point on the 2D image and vice
versa. The precision can often reach sub-pixel
accuracy on the image.

Many techniques have been developed for
camera calibration. Sturm and Maybank [10]

as well as Zhang [11] take pictures of a special
planar surface, or use grid-like planar surfaces.
Others have used circles or spheres in images [3].
Generally, once known points have been found,
the process of camera calibration goes like this:
1) using a camera or a pair of cameras, take
multiple photographs (with different views) of
a target; 2) distinguish different contours and
locate feature points on the target in each image;
3) providing a parameterized model for the cam-
era, estimate parameters to minimize discrepancy
between the model and the observed locations of
feature points.

This equation describes the mapping from
3D to 2D:
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In this mapping, there is a 3× 3 upper triangular
matrix called the intrinsic parameter matrix, a
set of numbers that describe the camera itself.
α and β represent the focal lengths, (u0, v0) repre-
sents the optical center (or principal point), and
γ is the skewness of the image. (We set skew to
zero for simplicity, as Zhang does – with most
cameras the skew is so close to zero that it is not
worth worrying about.) The are also the extrinsic
parameters R and t, which represent the rotation
and translation of the camera in the 3D world
(that is, how the camera is placed and oriented

in space). The two vectors [
u
v
1

] and [
X
Y
Z
1

] are ho-

mogeneous coordinates of the point we wish to
map in the image and 3D space respectively.

This model assumes that the lens produces
no distortion. This is not a good assumption with
real lenses, so it is necessary to correct for the
distortion. There are two major kinds of distor-
tion: tangential distortion and radial distortion.
Varying the alignment of two optical elements
produces tangential distortion. However, for most
cameras today, tangential distortion is not a sig-
nificant problem any more and can be ignored.
Radial distortion occurs when light rays bend
more near the edges of a lens than they do at
its optical center. The Brown-Conrady model
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[2] can be used to correct radial distortion. This
model fits a power series to distortion. In practice,
this infinite series is usually simplified to a short
finite polynomial, as the amount of correction
contributed by each term drops off rapidly:

x̃ = x+ x[k1(x
2 + y2) + k2(x

2 + y2)2]
ỹ = y + y[k1(x

2 + y2) + k2(x
2 + y2)2]

In these equations, (x, y) and (x̃, ỹ) are the ideal
(distortion-free) and real (distorted) normalized
image coordinates, and k1, k2 are the coefficients
of the radial distortion.

By solving the homographies of the mapping,
one can obtain the camera parameters and use
these parameters to estimate camera positions.
See Zhang’s paper [11] for details about the com-
putation of camera calibration.

We propose that projection of known points
in 3D space through a camera with known pa-
rameters, such as a cell phone or other portable
camera that is calibrated in advance, can be used
to precisely locate the position of that camera
for purposes of indoor location and navigation.
Unlike existing IPS methods, this method does
not require any infrastructure, can locate posi-
tions very accurately, and requires only a pair of
cameras and a copy of the buildings blueprint.

3 Method

3.1 Obtaining Data

Our data set consists of parameters of two cam-
eras that we use, parameters from image pairs
taken at various angles throughout the second
floor of the St. Olaf College science building, and
coordinates of feature points on these images in
both a world coordinate system and the image
coordinate system.

The camera parameters of the left and right
cameras include the translation of each camera
from the tripod position, rotation of the camera
from the tripod position, the focal length and
principal point of the cameras, and the distortion
factors of the camera lens. We got our camera
parameters from a previous group of researchers

who took the photos, including special calibra-
tion images. These cameras were mounted on
a metal bar attached to a tripod to ensure that
they remained at the same angle and distance
with respect to each other throughout the data
collection. For convenience, we considered the
tripod position to be at the left camera and so
fixed the left camera’s translation and rotation
at 0.

Parameters for each image pair are also nec-
essary, including the translation of the tripod for
each image pair and the rotation of the tripod
from a fixed orientation in the world coordinate
system. Rough estimates were made of the tripod
location and the orientation of the cameras for
each image pair. The positions can be estimated
by measuring the rough position of the foreground
of an image on the building’s blueprint, or by us-
ing a tape measure and dead reckoning from the
previous camera position as the pictures are be-
ing taken. On the other hand, the rotations can
be estimated by looking at the image and its
relation to the world coordinate system and tak-
ing an educated guess. We use Euler angles to
represent the rotation, by estimating how much
each camera rotates around the x, y, and z axes
respectively.

Finally, we need to know the correspondences
of some specific points between 2D coordinates
and 3D coordinates in order to set up relations
between them. Once the images were taken, we
used eriol, a 3D modeling program developed at
St. Olaf, to create contours, feature points, and
corners on the image pairs, and to merge tiles
and corners present in multiple images together.
Working in eriol, we placed three feature points
at the intersection of the floor and a wall on each
image and had eriol record the 2D coordinates
in pixels of these feature points. (We chose posi-
tions on the floor so that we would not have to
measure their height, which is more difficult to
find on a blueprint.) To find the matching world
coordinates of the point in 3D, we measured the
distance between the origin and that same point
on the blueprint using Photoshop (this would be
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a useful thing to automate in the future). This
gave us, for each image, three points in the world
coordinate system mapped to their corresponding
points in the image coordinate system.

3.2 Optimization

Once we had estimates of the camera parameters,
we used the Google Ceres [9] framework for nu-
merical optimization to minimize the error in our
camera position and orientation estimates. We
used code written by others at St. Olaf as a cost
function to project the points. To increase the
accuracy of the estimates, we chose to hold the
positions of the corners both in 3D space and in
the 2D images constant (the 3D positions were
obtained from the blueprint, the 2D positions
from user selections in eriol). We decided we did
not have enough data to optimize the positions
of the camera parameters further than the pre-
vious researchers had, so we held those constant
as well. In contrast, we had the optimizer vary
the position and rotation of the cameras on the
world coordinate system. Also, we had to ac-
count for a small error in our data collection: we
found that the rubber pad underneath the cam-
eras would flex slightly when the shutter button
was pushed, which meant that a small amount of
unpredictable rotation and dilation was added to
the images. To counteract this, we additionally
created and optimized parameters for additional
rotation of the right camera and additional scale
factor of the right camera.

4 Results

4.1 Accuracy of GPS

According to data submitted to the Federal Avi-
ation Association, 95% of measurements taken
by a good GPS system outdoors will be within
3.4 meters horizontally and 4.7 meters vertically
of the actual value [4]. However, we know that
GPS is far less accurate indoors. To confirm
the inaccuracy of indoor GPS for ourselves in our
own space of interest, one of the authors obtained

the Easy GPS app on an iPhone 5 and walked
around the building with it, pacing off 10 steps
(approximately 30 feet) at a time. In addition
to giving a reading on one’s current latitude and
longitude, the app gives a margin of error esti-
mate; unfortunately, we could not find specific
details on how this number is calculated. Results
in the entire science building ranged from a low
of ±21 ft to a high of over ±300 ft; on the second
floor, which we used exclusively for our tests, the
margin of error was universally ±123 ft.

4.2 Accuracy of IPS

We do not have any kind of existing IPS system
in our building, so we were unable to test its
accuracy here. In terms of existing systems, the
Korean Institute of Communications Information
Sciences studied different means of calculating
distances with IPS systems, and found that accu-
racy was typically between 2.9 and 4.9 meters.[7]
This is far better than GPS, but the error involved
can still be larger than a small room, which is
less than ideal.

4.3 Accuracy of Our Method

To test the accuracy of our method, we used 20
pairs of images (40 images total) taken at a num-
ber of tripod positions in a hallway on the second
floor of the building. We found feature points
and estimated other parameters for this data as
described above.

There are several sources of error in this pro-
cess. One preventable factor is that the cameras
were set on auto-focus, which was intended to im-
prove the quality of the images but likely changes
the camera parameters and may introduce error;
unfortunately, we have no quantitative informa-
tion on the size of this effect. Another possible
source of error is the original measurements of
where the camera tripods were positioned. The
authors were not involved in these measurements
and do not know how they were made, although
we know they were supposed to be measured to
the nearest tenth of a meter, which does not seem
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to have happened looking at the average changes
in position after optimization. If measurements
were on the sloppy side of that tolerance and
dead reckoning was used, it is possible that the
accumulation of error could have exceeded the
tolerance of the optimization process and caused
incorrect or less accurate results.

A third source of error, which cannot be pre-
vented entirely, is human precision in placing
feature points. To see how much error might
be created by poor placement of feature points,
we conducted two tests in which we deliberately
moved feature points 1, 10 and 50 pixels off the
correct points in both the X and Y directions.
The translation error in the final X, Y , and Z
values created by these movements was then mea-
sured; measurements are shown in the table be-
low.

Movement X (m) Y (m) Z (m)
1 px – X 0.016 0.013 0.029
1 px – Y 0.005 0.01 0.01

10 px – X 0.15 0.13 0.30
10 px – Y 0.06 0.11 0.12
50 px – X 0.78 0.67 1.49
50 px – Y 0.28 0.53 0.57

This data shows that positioning errors can cause
a significant drop in the accuracy of these po-
sitioning methods, so it is worth being careful
about where feature points are placed. However,
our experience doing 3D modeling at St. Olaf has
shown that 1-pixel error in feature point place-
ment is usually quite achievable, which means the
error created by this factor should be no more
than a couple of centimeters.

A final, related source of error is the preci-
sion with which the 3D positions of the feature
points are measured. We obtained our positions
by measuring a digital copy of the blueprints in
Photoshop, so the accuracy is determined by the
resolution of the image. In our version of the
blueprint, there were 50 pixels per foot of the
building, so we could expect measurement errors
of ±0.01 ft.

5 Conclusion

While we have not been able to fully account for
all sources of error and we do not have a way to
precisely measure the positions of the cameras in
images that were previously taken to directly com-
pare the accuracy of our technique, this technique
looks able to offer high precision. Distortion of
the camera parameters can be avoided by using
a fixed focus and a larger number of images, and
more careful data collection and estimates will
likely eliminate some of the other issues we saw.
The possibility of errors in finding coordinates
remains. However, even with a 50-pixel error
in feature point placement, which should be far
larger than we ever see in actual 3D models, we
saw errors considerably smaller than those of ex-
isting IPS systems – a small fraction of a meter
compared to several meters. While this technique
is not yet developed enough to be confidently used
in an actual positioning system, we feel it looks
promising and deserves further research.
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