
Refining 3D Reconstruction Of Stereo Camera Images
With Least Squares

Jacob Forster, Joseph Jung and Andrew Turnblad
Computer Science
St. Olaf College

Northfield, MN 55057
forsterj@stolaf.edu, jungj@stolaf.edu, turnblad@stolaf.edu

Abstract

In computer vision, a least-squares minimization technique known as bundle adjustment
is used to optimize the camera parameters necessary for 3D reconstruction of a scene.
Starting with a bundle adjustment technique for stereo camera models implemented by
Bonde et al, we employ auto-differentiation to reduce code size by over 50% while
eliminating the need to pre-compute the Jacobian of the stereo projection function. We
utilize Ceres-Solver to expand the capabilities of the previous optimizer implemented
using sba, allowing us to efficiently and concurrently optimize values for up to 12 in-
trinsic and extrinsic camera parameters in at least 5 different configurations. The use of
Ceres-Solver achieves similar final reprojection errors to the previous implementation
and reduces the time necessary to optimize the many parameters of the stereo camera
model by over 95%.

1 Introduction

Camera calibration is a vital step used to determine the parameters of a camera neces-
sary for extracting metric information from 2D images and translating 2D points to their
respective 3D counterparts. After estimating the camera parameters using a closed form
solution relying on epipolar geometry, these parameters must be refined using bundle
adjustment, a form of maximum likelihood estimation, in order to minimize the repro-
jection error. In other words, the camera parameters, scene parameters, and coordinates
of particular points in the scene, all of which influence the metric information in the 3D
reconstruction of the scene, must be jointly refined in order to minimize the deviation
of the reconstructed 3D output from the actual 3D structure of the scene.

Due to the nature of our particular 3D reconstruction problem, the number of parameters
that must be jointly optimized leads to a very slow and computationally prohibitive pro-
gram in its current form. In particular, by utilizing a stereo rig, not only are the motions
of the two cameras used for taking photos constrained, but the number of parameters
that must be optimized is doubled. In addition, the utilization of camera auto-focus, as
well as the presence of slight and unintentional, although largely systematic, deviations
from the expected location of the cameras when capturing images, further complicates
the data set that must be refined. Therefore, building on the work of previous research,
we investigate refinement techniques using the Levenberg-Marquardt nonlinear least
squares minimization algorithm that allow simultaneous and flexible optimization of all
camera, scene and feature point parameters in an efficient manner. We investigate two
methods: one that employs sba, a C library for performing camera calibration; and one
that takes advantage of Ceres-Solver, a newer C++ minimization library developed and
used by Google.

2 Background

2.1 Pinhole Camera Model
In order to understand the relationship between the 2D information in an image and the
metric information necessary to reconstruct a 3D scene, we utilize the pinhole camera
model. In this paradigm, it is assumed that all light passes through a small optical cen-
ter, or ”pinhole”, to produce an inverted image on the ”retinal plane” of the camera’s
image. However, because this model doesn’t take into account any undesirable side-
effects of modern cameras, such as lens distortion or blurring, its accuracy depends on
the quality of the camera calibration process and, as per the motivation for this paper,
subsequent refinement of the parameter estimations produced through the model.

In this paradigm, to ”project” the light through a ”pinhole” onto a 2D scene, the 3D
coordinates of a given point must be multiplied by the intrinsic camera parameter ma-
trix

A =

 αu γ u0
0 αv v0
0 0 1

1

and extrinsic camera parameter matrices [R t], where R is a 3× 3 rotation matrix and
t is a 1× 3 translation matrix. Here, αu and αv are the magnifications, relating to the
focal length of the camera in the two image coordinate directions, u0 and v0 are the
coordinates of the principle point (the point at which the image axis meets the retinal
plane) and γ is a skew factor (which we will assume to be zero for our case). Thus, the
relationship between a point in a retinal image plane, produced by a camera, and a point
in 3D space can be succinctly expressed by

sm = A[R t]M (1)

where s is a scaling factor and m = (u,v,1) and M = (x,y,z,1) are the homogeneous
coordinates in 2D and 3D space respectively. [5]

2.2 Stereo Camera Model
A stereo camera system is a similar modeling involving two pinhole camera models.
An image taken from a stereo camera system involves three categories of parameters
which may be adjusted, many of which reflect the original pinhole model:

per-camera parameters =

focal length (fx, fy)
principal point (u0, v0)
translation (x, y, z)
rotation (a, b, c)
distortion coefficients (k0, k1, p0, p1)

per-pair parameters =

translation (x, y, z)
rotation (a, b, c)
scale (s)

per-corner parameters =
{

position (x, y, z)

Here, a camera refers to one physical device. The extrinsic parameters are relative to
the location of the pair. There are 14 parameters for each of the left and right cam-
eras. The pair is the position and orientation of the rig on which the two cameras are
placed to construct the stereo camera. There is additionally another rotation which is
introduced as a correction factor for the right camera, for a total of 10 pair parameters.
Every image taken is treated as being taken by a pair, so the pair parameters correspond
to every pair of images. A corner is an actual real-world coordinate which is observed.

Every observed point, indicated by x = (u,v), is related to each corner, X = (x,y,z),
by the projection function

x=M(C,P ,X)

where C represents the set of relevant camera parameters and P the pair parameters.
Modifying Equation 1 for the stereo model yields

xi =Ki[Ri ti]X (2)

2

where K consists of the camera intrinsic parameters and i denotes a particular camera.

2.3 Parameter Refinement
Although Equation 2 is used to make the initial estimates for the intrinsic and extrinsic
camera parameters, the parameters can be refined by minimizing the reprojection error,
or the distance between the actual location of corners in an image and their predicted
location. The objective is to obtain the optimal values for all involved parameters such
that we minimize the reprojection error

cost = ∑
i, j,k
|mi jk−M(Ci,P j,Xk)|2 (3)

where the subscripts denote the ith camera, jth pair and kth corner. Also included in the
projection function are the distortion parameters, k1 and k2, where the distortion alters
the image in the radial direction as described in [5].

3 Previous Work

The work done in this paper extends upon work done by previous investigators. Namely,
Bonde, Brumfield and Yuan implemented sparse bundle adjustment across images cap-
tured using a two-camera stereo rig by utilizing sba, a flexible C library that implements
sparse bundle adjustment using the Levenberg-Marquardt algorithm. [4] [2]

Interestingly, the distortion coefficients are not directly considered in the modified re-
projection error as the feature points have the distortion effect removed using a simple
formula before utilization in the minimization.

The three primary limitations in the parameter refinement implementation employed
by Bonde et al. [2], which the following solutions will aim to address, are:

1. The numerous derivatives used in calculating the Jacobian of the projection func-
tion necessary in the minimization are derived using symbolic mathematics soft-
ware (e.g. MatLab) and then converted into C++ code by hand. Therefore, the
Jacobian is calculated analytically by sba. Although this leads to very fast and
exact calculations, it makes changing the parameters that are being optimized,
changing the projection model, or fixing any bug in the minimization procedure
extremely difficult.

2. The intrinsic parameters are held constant throughout the refinement of param-
eters. Again, this leads to a very fast minimization procedure, but it is at the
expense of the more refined parameters necessary for an accurate 3D reconstruc-
tion.

3. Partially occurring as a byproduct of limitation two, the distortion coefficients are
not only held constant throughout the parameter refinement, but are not included
in the projection function. Specifically, the expected 2D coordinates of a given
feature point in each retinal image plane are un-distorted before optimization and
used as the expected 2D coordinates in Equation 3.

3

4 Proposed Solutions

The first modification made to the previous work was the use of the C++ package Adept
to calculate the Jacobian of the projection function. [3] Instead of building up the deriva-
tives of the projection function with respect to the many parameters using symbolic
mathematics software and then copying the final result into C++ code, we constructed
the projection function in C++ using a custom-built matrix library and Adept’s auto-
differentiation capabilities. This implementation solves limitation 1 listed above, while
offering the flexibility to solve limitations 2 and 3. It is also much easier to debug and
results in almost negligible overhead in the total time the procedure takes to optimize
the parameters.

Although the use of auto-differentiation via Adept was one step towards solving lim-
itations 2 and 3, it did not, by itself, solve either limitation or offer the flexibility to
easily switch which parameters (extrinsic or intrinsic) were optimized in a given run.
To that end, the following two solutions are proposed.

4.1 sba : Per Pair Optimization
In order to optimize both the intrinsic and extrinsic parameters of the cameras, the sim-
plest solution is to simultaneously optimize the intrinsic and extrinsic parameters. That
is, instead of holding the intrinsic parameters constant, allow them to be optimized per
pair rather than per camera.

One downside of this implementation is the large number of individually optimized val-
ues - the number of intrinsic parameters is now multiplied per pair - and as a result, the
extended amount of time that it will likely take to optimize them. Similarly, if the min-
imization even converges with this many parameters, there is a risk of overfitting since
each pair of images likely does not offer enough data to optimize this many parameters.
Additionally, this approach wouldn’t ordinarily make sense on a physical level since the
intrinsic parameters should be constant across all images; however, when we consider
that auto-focus may have been involved when taking the images, this approach may be
justified.

4.2 Ceres-Solver
Ceres-Solver, another open source C++ library for solving large scale non-linear least
squares problems, offers an attractive alternative to sba. [1] In particular, Ceres-Solver is
flexible enough in its implementation of parameters that, unlike sba, the user is allowed
to explicitly and easily set how often a given set of parameters should be optimized. In
this way, instead of requiring a second minimization procedure for the intrinsic param-
eters, one minimization procedure can be used to optimize all parameters at the same
time. In theory, this solution contains the best of solution 4.1 and should yield a good
balance between minimizing both reprojection error and run time.

The extensive documentation available for Ceres-Solver renders the implementation of
this minimization, based off of the previous sba implementation described in [2] trivial.
It is important to note however that, to take advantage of the built-in auto differentiation
capabilities of Ceres-Solver, the projection function used by Bonde et al can be split into

4

two different projection functions (one for the left camera and one for the right), which
Ceres-Solver calls ”Residual Cost Functions”. Because the projection function of each
camera in a pair involves only the camera’s intrinsic matrices and the pair’s extrinsic
matrices, the mathematical relationships between, and the constraints imposed upon,
the left and right cameras are preserved.

5 Results

For all of the results, we will be using the final reprojection error summed over all fea-
ture points (total cost) as a measurement of the accuracy of the parameter refinement
routine. We will also be using the relative timing between the tests as an indication of
the efficiency of the parameter refinement routine, as all tests were performed on the
same hardware.

5.1 sba : Per Pair Optimization
As expected, using the parameter refinement method that optimizes intrinsic parame-
ters per pair of images resulted in a much slower routine than holding the parameters
constant. In fact, as Table 5.1 indicates, optimizing even two more intrinsic parameters
resulted in a 432% increase in the time it took sba to complete. Table 5.1 summarizes
the results we obtained using this method. Note that all of these tests were forced to
finish after 100 iterations even if they had not yet converged since optimization beyond
that point leads to very little decrease in reprojection error relative to the increase in
time. In Table 5.1 and the following tables, x,y and z denote the displacement of the
camera from the location of the pair while a,b and c denote the Euler angle rotations of
the camera relative to the pair.

Intrinsic Parameters Optimized Total Cost Total Time (s)

None 21,074.6 13.73
fx, fy 21,712.7 59.31
u0,v0 19,590.7 59.33
fx, fy,u0,v0 11,752.7 121.24
fx, fy,u0,v0,x,y,z,a,b,c 29,733.2 289.24

Table 1: 72 Camera Pairs and 64 Feature Points

As Table 5.1 indicates, the total reprojection error was, in the best case (optimizing
fx, fy,u0, and v0), about halved using this method. Unfortunately, this lower reprojec-
tion error came at the expense of the time it took the routine to complete. Additionally,
since the intrinsic parameters were optimized on a per pair basis, it is likely that the
parameters were overfitted. Support of this conclusion can be seen in the fact that the
total cost increased dramatically when all intrinsic parameters were included. In other
words, it is not surprising that the reprojection error did not decrease when x,y,z,a,b
and c were allowed to vary since these parameters are relative to the extrinsic translation
and rotation of the pair and, as such, should actually be constant. The dramatic increase

5

in the time it took for the minimization to complete, while resulting in a higher total
cost, alludes to the overabundance of possible variables to optimize.

5.2 Ceres-Solver
Due to its flexible API, Ceres-Solver not only resulted in a better refinement of param-
eters, but also took the least time for the reprojection error to converge. In fact, when
no intrinsic parameters were optimized, Ceres-Solver resulted in the same total repro-
jection error as sba but took only 3.8% of the time. Furthermore, in the best case, using
Ceres-Solver to optimize intrinsic parameters once across all image pairs resulted in a
3.6% decrease in reprojection error as compared to holding the parameters constant.
Table 5.2 summarizes the results of using Ceres-Solver and accounting for distortion
using the same technique as Bonde et al. Table 5.3 displays the results of initially set-
ting k0 and k1 equal to zero and incorporating distortion into the projection function.
Note that these tests were forced to finish after 1000 iterations for the same reasons as
specified in §5.1.

Intrinsic Parameters Optimized Total Cost Total Time (s)

None 21,079.4 .53
fx, fy,u0,v0 20,682.1 .41
fx, fy,u0,v0,x,y,z,a,b,c 20,338.5 .79

Table 2: 72 Camera Pairs and 64 Feature Points (Pre-Distortion)

Intrinsic Parameters Optimized Total Cost Total Time (s)

None 40,492 .12
k0,k1 40,383.4 .12
fx, fy,u0,v0 23,649.5 1.02
fx, fy,u0,v0,k0,k1 23,611.8 1.02
fx, fy,u0,v0,k0,k1,x,y,z,a,b,c 23,420.1 1.23

Table 3: 72 Camera Pairs and 64 Feature Points (Optimizing Distortion)

While Ceres-Solver was able to reduce the total cost while using the distortion tech-
nique of Bonde et al by optimizing intrinsic parameters, perhaps the most surprising
result is the increase in total cost when optimizing the distortion coefficients as part of
the projection function. It is possible that this could be due to initially estimating k0
and k1 to be zero, but the high quality nature of the cameras that were used and the fact
that the optimization barely changes these coefficients (on the order of 10E-13 or less)
indicates this is not the issue. In fact, as shown in the tables below, when Ceres-Solver
was used to optimize a much larger set of feature points and camera pairs, the total cost
and total time to complete were both improved by including and optimizing the distor-
tion coefficients in the projection function. Therefore, it is possible that the distortion
coefficients used in the procedure of Bonde et al were, in a sense, overfitted to that small
data set when they were estimated.

6

Intrinsic Parameters Optimized Total Cost Total Time (s)

None 217,137.60 15.1
fx, fy,u0,v0 180,997.2 36.3
fx, fy,u0,v0,x,y,z,a,b,c 184,496.7 26.6

Table 4: 22 Camera Pairs and 1380 Feature Points (Pre-Distortion)

Intrinsic Parameters Optimized Total Cost Total Time (s)

None 203,204.4 13.4
fx, fy,u0,v0,k0,k1 144,606.8 35.1
fx, fy,u0,v0,k0,k1,x,y,z,a,b,c 174,494.5 10.7

Table 5: 22 Camera Pairs and 1380 Feature Points (Optimizing Distortion)

Note that when a larger data set is used, the robustness of solution 4.2, instead of hold-
ing the intrinsic parameters constant or using solution 4.1, becomes more apparent.
Namely, using sba and holding intrinsic parameters constant to optimize the larger data
set resulted in a total cost of 236,571 after 17.4 seconds. On the other hand, using
Ceres-Solver and allowing both the intrinsic parameters and the distortion coefficients
to be optimized as part of the projection function decreased the total cost by 39% while
increasing the total time by only 201%.

6 Conclusion

Using Ceres-Solver to jointly optimize the distortion coefficients and intrinsic param-
eters of the two cameras in our stereo model significantly improved, especially on a
larger data set, the reprojection error produced in the technique utilized by Bonde et
al. The benefits of the lowered reprojection error, as well as the increase in flexibil-
ity that Ceres-Solver’s API offers, negates the slight increase in time that accompanies
this refinement technique. Extending the results of this paper to compare not only the
reprojection error, but the actual 3D reconstruction that results from each refinement
technique would be useful and could lead to insights not apparent from the reprojection
error alone. Including a form of tangential distortion instead of just radial distortion
could offer improved results and would be a natural extension as well.

References

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.
org.

[2] Luke Bonde, Allison Brumfield, and Ye Yuan. Error minimization in 3-dimensional
model reconstruction using sparse bundle adjustment and the levenberg-marquardt
algorithm on stereo camera pairs.

7

[3] R. J. Hogan. Fast reverse-mode automatic differentiation using expression tem-
plates in c++. ACM Trans. Math. Software, 40(1):1–26, 2014.

[4] M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic Sparse
Bundle Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.

[5] Zhengyou Zhang. Emerging Topics in Computer Vision, chapter Camera Calibra-
tion, pages 4–43. Prentice Hall Professional Technical Reference, 2004.

8

