
 
 

Creating a Difficulty Metric for A Sudoku Variation 
 

Emily Alfs 
 Mathematics and Computer Science 

Doane College 
Crete, Nebraska 68333 
emily.alfs@doane.edu 

 
 

Abstract 
 

Frame Sudoku is very similar to traditional Sudoku. The game is set up with 9X9 grid 
and nine 3X3 sub-grids. The goal of the game is the same as traditional Sudoku: place the 
values 1-9 exactly once in each row, column, and 3X3 sub-grid. Frame Sudoku differs 
from traditional Sudoku in how it starts. In Frame Sudoku, we are given only “frame 
clues” and no internal clues. 
 
As with Sudoku, there are many ways to judge the difficulty of a game. During the fall 
semester, we created a computer program that would assess the difficulty of any given 
Frame Sudoku game based on the number of times any techniques were used in the 
solving process. We designed and implemented these techniques then weighted those 
techniques based on their individual difficulties. Once we created a system that would 
rate games, we created a machine-learning program to learn our rating system. 



	 	 	

	 	 	1	

1 Introduction 
 
Sudoku as we see it in newspapers and magazines is a very approachable game. You are 
given a nine by nine board that is separated into nine three by three sub-grids. The game 
starts with a certain number of cells filled in with values ranging from one through nine. 
The goal of the game is to get the values one through nine in each row, column, and three 
by three block exactly once. When we see Sudoku in the newspaper or in magazines, we 
often see it accompanied with some sort of difficulty rating. These can range from easy to 
brainy and typically, ranking techniques vary from source to source. 
 
The goal of this research was to create a machine-learning program to learn a particular 
rating system we create for a variation of Sudoku, Frame Sudoku. Our rating system was 
set up as follows: we analyzed solving techniques for Frame Sudoku, assigned those 
techniques a difficulty rating, then based on how many times each technique was used we 
assigned a difficulty level to the puzzle. Once we had a large enough data set, we created 
a machine-learning program to learn our system and tested it on other data points. 
 
 
2 How to Play 
 
Frame Sudoku is similar to traditional Sudoku in the form of the game and the goal. 
However, the starting givens are different. There are no cells filled in initially and the 
only clues are on the outside of the board, the frame. These clues tell the player the sum 
of the three closest cells. An example of this game can be seen in Figure 1. 

 
Figure 1: An example of a typical Frame Sudoku game. 

 



	 	 	

	 	 	2	

As mentioned previously, each frame clue tells us the sum of the three closest cells. To 
help illustrate this, consider the top left block of the game in Figure 1. The 6 tells us that 
the values 1, 2, and 3 must go in the three cell column below the 6. However, we do not 
know in what order to place them. We know that these values must be 1, 2, and 3 as 
Sudoku rules allow us to use the values 1 through 9 exactly once in each row, column, 
and block. This can be better visualized in Figure 2. 
 

 
Figure 2: We know 1, 2, and 3 must go in the green cells, as those are the only values that 

add up to 6 with Sudoku constraints. 
 
To figure out what order the 1, 2, and 3 must be placed in we must use the intersecting 
row clues. As one might be able to tell, the strategy behind this variation relies heavily on 
partitions. A partition is a way of writing an integer n as a sum of positive integers where 
the order of the summands is not significant, possibly subject to one or more additional 
constraints. [2] 
 
The partitions of the three row clues, 17, 12, and 16, will help us to place the 1, 2, and 3 
in column one. However, these will be more difficult to solve for as they have many more 
partitions. Consider the frame clue 12: this can be filled in using, {1, 2, 9}, {1, 3, 8}, {1, 
4, 7}, {1, 5, 6}, {2, 3, 7}, {2, 4, 6}, or {3, 4, 5}. Thus, the game must be played more 
strategically. 
 
 
3 Previous Research 
 
During the summer, Susanna Lange and I analyzed this particular version of Sudoku to 
better understand it. This work was partially supported by National Science Foundation 
grant DMS-1262342, which funds a Research Experiences for Undergraduates program 
at Grand Valley State University. One of the many products of this research was a 
program that generated Frame Sudoku games with unique solutions, meaning they can 
only be filled in one way.  
 
I continued with this topic at Doane College for a senior research project. The goal of this 
research was to create a difficulty metric for Frame Sudoku. We found Djape’s book that 
had approximately 50 rated Frame Sudoku games. [1] Throughout the research, we 



	 	 	

	 	 	3	

attempted to reflect Djape’s rating system by creating our own. Our system was 
developed by defining solving techniques and programming them so a computer could 
solve games as a person would using these techniques. Difficulty was rated by the 
number of times each technique was used. Based on the level of difficulty, these 
techniques were given different weights. These weights were added together to give us 
our difficulty rating, which ranges from 10 to 3,400. Unfortunately, we were not able to 
replicate Djape’s rating system. However, we were able to create unique games and 
assign them difficulties to train and test our machine learning system. From these 
previous research experiences, we were able to create and rate as many games as we 
would like to run through our neural network.  
 
 
4 Neural Network 
 
An artificial neuron network (ANN) is a computational model based on the structure and 
functions of biological neural networks. Information that flows through the network 
affects the structure of the ANN because a neural network changes - or learns, in a sense - 
based on that input and output. [5] 
 
The key components to a neural network are edges and nodes. Each edge, which is a 
connection between the nodes, has a weight. The assigned weight of that edge will 
multiply the value that is traveling down the edge. The nodes can have different types and 
in our case, we had two types: multipliers and adders. The nodes accumulate the 
weighted values that are coming from the input edges. The node either adds all of the 
weighted input values or multiplies them depending on the node type.  
 
Neural networks consist of three layers: the input layer, one or more hidden layers, and 
the output layer. The input layer is just that, the initial input values. In our case, the input 
values were all of the frame clues for a single game. The hidden layer is where the 
weights and accumulations happen which was mentioned previously. To see the specific 
setup, please refer to Figure 4 at the end of this paper, which shows half of the neural 
network. Our output layer is a single node that represents our difficulty.  
 
In order to find the weights and node types, we had to “train” our neural network. Our 
training process was through a genetic algorithm. 
 
 
5 Genetic Algorithm 
 
We modeled natural evolution in a genetic algorithm by using operators such as 
crossover, mutation, and selection to get the best individual. Crossover behaves like a 
mating process in that it takes two individuals, switches some of their DNA, and 
produces two new offspring. Mutation takes a single individual and randomly changes its 
DNA based on a probability of mutation. Selection takes two random individuals, 
evaluates their fitnesses, and selects the individual with the better fitness [3]. This process 



	 	 	

	 	 	4	

trained our population of neural networks to ultimately give us the fittest individual, 
meaning the most accurate neural network. 
 
The genetic algorithm we created was based off of the Doane Evolutionary Algorithm 
(DEA) [4]. In our case, the individual, a single neural network, is represented as an array 
of 107 doubles. This allowed us to use methods that were built into the DEA for 
crossover, selection, and mutation. Our neural networks had a static structure so they 
always had the same number of nodes and edges, half of which can be seen in Figure 4 at 
the end of the paper.  
 
 
5.1 Crossover 
 
Crossover happens at a rate of 60%. So we go through the entire population and generate 
a random number between 0 and 1. If that number is below .6 then crossover happens. 
When an individual is selected for crossover then another random individual is selected 
and they crossover a random value in their respective arrays.  
 
 
5.2 Mutation 
 
Our mutation operator is rather straightforward. The mutation will happen if a random 
number between zero and one is less than our chosen μ, which we have set to .25. Our 
mutation is a single point mutation so only one value in our array will change when 
mutation happens. 
 
 
5.3 Selection 
 
Within our program, we use elitist tournament selection. This ensures that our best 
individual from the population survives into the next generation. Without elitist 
tournament selection, this is not guaranteed. In regular selection two individuals from the 
current population are selected and have their fitness’s compared. Whichever individual 
has the higher fitness goes to the next generation. However, both individuals remain in 
the current population and are subject to selection again. By using elitist tournament 
selection, our next generation will always contain the best member of the previous 
population.  
 
 
5.4 Fitness 
 
Fitness of a single neural net is measured by putting 500 Frame Sudoku games through 
the neural net. These games were produced and rated from previous research and have an 
expected difficulty level already assigned to them. We then add together the differences 
between the expected difficulty level and output layer value of the game.  
 



	 	 	

	 	 	5	

 
6 Results 
 
Half of our fittest neural network can be seen in Figure 4 at the end of this paper. This 
individual was reached using 2000 generations each with a population size of 100,000 
neural networks. Figure 5 shows a partial table of results. These results are based on 
games that the neural network was not trained on.  
 
Overall, the average difference between the expected value of the game and the evaluated 
value was 453. The standard deviation was 578 and the variance was 335,124. Some 
ways that we could improve the results would be to run the genetic algorithm with more 
generations and individuals or to change the structure of the neural network. As 
mentioned previously, our neural network was a static structure so it never changed. The 
structure of the neural network could potentially evolve through the genetic algorithm as 
more advancement occurs throughout this project.  
 



	 	 	

	 	 	6	

 
Figure 3: This diagram simply shows how the frame clues map to the input layer of the 

neural network.  

0		 			1		 					2	 							3		 								4	 										5			 6	 	7	 	8	

9		 	10		 			11	 					12		 						13	 							14									15	 									16									17	

18		 			19		 				20	 						21		 									22							23												24	 25										26	

27	
	
	
28	
	
	
29	
	
	
30	
	
	
31	
	
32	
	
	
33	
	
	
34	
	
35	

36	
	
	
37	
	
	
38	
	
	
39	
	
	
40	
	
41	
	
	
42	
	
	
43	
	
44	

45	
	
	
46	
	
	
47	
	
	
48	
	
	
49	
	
50	
	
	
51	
	
	
52	
	
53	



	 	 	

	 	 	7	

 
Figure 4: This shows half of the neural network structure and half of the assigned values. 

The other half is symmetric in shape however the values are different. The two halves 
would be joined with two edges to a single node, which is our output value.  

 
 
 
 
 
 
 
 
 
 



	 	 	

	 	 	8	

 

 
Figure 5: Partial results depicting the expected value, which was assigned by a program 

using solving techniques, then the value evaluated by the neural network, followed by the 
difference.



	 	 	

	 	 	9	

 
References 
 
[1] Djape, Frame Sudoku: A Hybrid Between Killer Sudoku and Outside Sudoku, 
CreateSpace Publishing, 2014 
[2] Hardy, Wright, Encyclopedia of Mathematics, 2003 
[3] Hiu Man Wong. Genetic Algorithms. In SURPRISE 96 Journal, 1996 
[4] Mark M. Meysenburg. The DEA: A Framework for Exploring Evolutionary 
Computation. In MICS 2004: Proceedings of the Midwest Instruction and Computing 
Symposium, April 2004.  
[5] Techopedia, Artificial Neural Network 


