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Abstract

With the rapidly increasing processing power available to mobile devices, client side
rendering is becoming a more and more viable option for mobile rendering. Recent
developments in mobile graphics as well as research done in the field of web-based applications
leads to the conclusion that a client-rendered model is increasingly possible on consumer grade
handhelds. It is the purpose of this paper to explore and qualify the extent to which client-side
rendering of a 3D model is a reasonable venture, and to test the capabilities and limitations
therein. Testing of these capabilities requires optimization techniques on both the client and
server. Rapid page load was achieved through use of pre encoding of data on a server, then this
page load data is compared to the WiFi signal strength and the network bandwidth data that was
collected throughout a large building.



Introduction

Historically, the practice of rendering 3D graphics over the internet for mobile devices
was a process of trying to most efficiently send the already rendered data over the network from
server to client. However, with the rapidly increasing processing power available to mobile
devices, this is no longer the only answer. Recent developments in mobile graphics as well as
research done in the field of web-based applications leads to the conclusion that a client-rendered
model is increasingly possible on consumer grade handhelds. The purpose of this paper is to
explore and qualify the extent to which client-side rendering of a 3D model is a reasonable
venture, and to test the capabilities and limitations therein.

Background

Server-side rendering tends to handle the obvious bottleneck of data transfer by trying to
predict exactly how much information it needs to send at once or in simplifying that information
as much as possible. One 2007 study worked to be able to give the smartphones of the day the
ability to render textured polygons in the order of millions by having a cluster of specialized PCs
rendering the information and sending the render as a MPEG video to be streamed by the client
[Sawicki and Chaber 2012].

Valuable bits of bandwidth can be saved by relying on client-side hardware to do the
rendering of a 3D model and mobile devices are getting much better at performing these
graphical computations. The question of efficiency then becomes a question of how to send the
information in a way that is quickly readable by client-side hardware and smoothly sent over the
network. One such method is to use predictive modelling. A 2012 paper from the Journal of
Computer Science detailed an approach to this method [Lamberti and Sanna 2007]. In this paper,
the authors take a 3D model and divide it into 3D scenes, each with their own objects and 3D
meshes. they provide the starting scene to the client, and then constantly stream information
about the surrounding scenes and meshes. This works because the only information sent-both
initially and in the stream—is the parts of each scene or mesh that are visible. This means that
even though an object might be in the frame of the camera, only the triangles in the mesh that are
not occluded are sent to the client. This method relies not only on the hardware of the client, but
on the hardware capabilities of the server. The server is constantly surveying the 3D model and
trying to predict which scenes and meshes will become visible to the camera view of the client.
While hardware intensive, this method heavily reduces strain on the network, and increases
responsiveness of the mobile display. In addition to rendering the information being sent by the
server, the client builds up a cache of information while the rendering is happening, and
deallocates some information at a certain interval based on the same predictive model that the
server uses to guess where the user is navigating in the 3D model. The cache can be used to
recall data without relying on the server to resend that data.

Additional work done in this area comes from the work of Sawicki and Chaber, who
attempt to answer a similar question.[Sawicki and Chaber 2012] Their paper, however, uses the
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older and less efficient canvas renderer, while the data presented in our research is not only using
modern devices, but also the more efficient WebGL renderer, which allows for hardware
acceleration. Their claim (published in 2012) that “it is currently not possible to rely on WebGL
technology” has changed with the passing of time, currently 91% of browsers are capable of
supporting the WebGL renderer used in this paper. [WebGLStats 2015] Additional work has
gone into considering texturing the meshes that we use, a facet of 3D models not considered in
Sawicki and Chaber’s paper.

The problem of web-based 3D graphics is driven by convenience. Today’s users are
accustomed to near-instant response when interacting with the digital world, especially the brief
yet numerous interactions had daily with mobile technology. This applies to 3D models as well:
reactivity and interactivity are two of the five most important qualities that any computer
visualization can have [Tang et al. 2010]. The other qualities focus on other aspects of the
experience, which are beyond the scope of this paper. With advances in hardware capabilities of
mobile devices it is becoming easier to provide this experience to users, even when there is a
large amount of data involved. For the user, interactivity is the most important quality that an
application can have, thus driving inquiry into this problem; the quality of device and
circumstances such as signal quality and location ideally should not affect the user’s ability to
manipulate the model.

Method

Given a large database of 3D polygon data and texture mapping information, along with
texture images, a system was devised for the render of these polygons. These polygons are an
attempt to create a 3D representation of a scene contained in carefully measured stereo images.
We concern ourselves with the creation of a method of displaying a model that is reasonably
responsive regardless of the number of simultaneous users of devices connecting, or the
bandwidth and hardware available to any one device.

Server

The server involves being able to easily retrieve information about the 3D scene and
images being used for textures in a way that can be sent over the network using Javascript Object
Notation, or JSON. We chose to use JSON for our communication standard due to it’s ease of
use and cross-language compatibility. The JSON structure is extremely versatile and has no limit
to the size or function of the information being transmitted. Our JSON structure sends the name
of'a 3D object, the name of an associated image (from which to pull a texture), a set of
coordinates that describe vertices of polygons to be rendered, and (U,V) coordinates associated
with the vertex. The JSON object also includes the image data that polygon textures are derived
from. Encoding the original .png images in base64, we can send the data as a part of the JSON
object. This is not the most efficient method, as the effective filesize of the image is increased to
4/3 the original size, but it is the most straightforward given our dataset. In addition to encoding
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the data, the server also checks to make sure tessellation data is up to date. Because the raw data
is stored in a structure that is not easily renderable, the server converts that data into a set of
renderable points, which are stored in a file so that time is not wasted recreating this data for
every request received. Files created for this purpose are known as .poly3GL files, and hold
information about which images that particular polygon exists in, and then 5 coordinates for each
vertex, grouped to contiguous polygons.

We take advantage of the similarities between the desktop library OpenGL and the web
library WebGL to precompute as much as possible. OpenGL is used to take patches of vertices
and convert them to GL primitives so that the entire polygon is divided into triangles that can
easily be rendered and texture mapped. For simplicity we use only a selection of the available
primitive types, namely the triangle, triangle strip, and triangle fan [Figure 3]. This form means
that we can save time parsing by packaging information by polygon rather than by image pair, so
even though the text files are longer, the information is more centralized and more easily read
into the 3D model by the client.

The core of the server is implemented as an extension of the Python standard HTTP
server. By extending this widely-used server we can take advantage of the work done on
optimising the central server functionality and focus on efficiency in programming the specific
functions that we need. We implement a variety of functions in Python, but the computationally
intensive task of creating .poly3GL files is handled in a C++ program to ensure that it is as
efficient as possible. Our server attempts to prevent this from having to be done on the fly by
creating these files periodically for any image that has been edited, but occasionally a user will
attempt to render information that has not been updated. In this case the computation has to be
done before the server’s response can be generated. This cannot be avoided if we expect the
scene to make sense as any changes to one file could cascade into changes to the entire scene.

Client

Once the polygon information is received by the client, it is the job of the client hardware
to efficiently render and control the 3D model. The first and simplest thing the client does is
condition a render distance. This is relatively easy to implement because there is already a loop
iterating through each value in the JSON object. It is therefore relatively inexpensive to add
conditional logic to render polygons based on distance. The client could also skip rendering
polygons which are partly or completely occluded by other polygons, as the 2012 paper on
predictive modeling does [Lamberti and Sanna 2007]. This is not something implemented in this
version of the 3D model because the information being grabbed by the server is not yet
accurately separated into scenes and object meshes like the data used in that study was.

To avoid socket programming, the implementation of the client-server communication
uses AJAX. AJAX is a method of communication that takes advantage of asynchronous
programming. For our purposes we chose to use POST requests within our AJAX
communication system. The client assembles a set of headers that the server needs to recognize
the request as an AJAX request, then encodes data to the request. The client sends the data to the
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server on an open port, determined when starting the server. The server receives the request and
recognizes it as AJAX based on the headers that the client generated. The server can parse and
use the data that the client encoded, make decisions based on said data, then encode its own
reply, also formatted with headers and data. After the client sends the request, it can continue
doing something else while it waits for a response; this property is especially important for our
program since any time spent waiting for the server to respond is time that the client cannot
spend rendering frames for the user. The reception of the server’s response triggers a client
callback, the callback triggers a routine that adds the contents of the server’s JSON encoded
response to the rendered scene, which is then rendered on the next frame.

The server’s response is a JSON object. This object is parsed, then the points that it
contains are rendered in 3D space. To ease this process we chose to use the Three.js library,
which is a lightweight library on top of WebGL. Having defined a set of primitives for Three.js
to use, we feed the vertex data into the scene one face at a time. After the vertices are all in place,
the base64 image data contained in the JSON object is assembled into a Three.js image object.
By going directly into an image object we can reduce the amount of time that the client must
spend reassembling the image. The use of base64 is further justified when the asynchronous
requests are considered, as the only delay that the larger filesize causes is in the initial load. The
U and V coordinates are then used for each vertex to find the appropriate coordinate on the 2D
image. Once the coordinates are mapped for the entire face the texture is applied to the face and
it is added to the scene. This entire process only happens once for each set of data that the client
receives, the rest of the time the scene is simply redrawn based on the position of the camera.

Once the data is rendered by the client the user can begin to interact with the model. The
versatility of web applications is showcased here, as the program changes the interaction controls
based on the hardware that a user is connecting from. If the device reports that it is a mobile
device then the client allows for motion-based controls where rotating the physical device rotates
the camera and touching the screen moves the camera about the scene; if a device reports to be a
traditional computer device (laptops included) then the client allows for more keyboard friendly
controls. This is certainly possible in a more traditional application, but the web app can reuse
the majority of it’s code regardless of device. Additionally, this method of programming made
testing the program much easier.

Data

The mobile devices used for testing were an Apple iPhone 5, Samsung Note 4, an Asus
ZenFone, a first generation Apple iPad Air and an HTC Nexus 9. By using a varied set of
devices we were able to gather data that simulates a variety of use cases. Also tested were an HP
7420 Workstation desktop PC (from which the servers were run) and a Lenovo N585 laptop.
[Figure 2] All tests were performed in the Google Chrome browser or the Chromium browser,
from which Google Chrome is derived. This browser was chosen for its JavaScript engine, which
is known to be the most efficient on mobile devices. Because of possible variation in how
different browsers might handle our code, we chose to use chrome to ensure the data did not
have confounding variables, and the version of Chrome was noted for each device.
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Each device was tested in four different locations, with varying connection strengths to a
WiFi network. For comparison, the network upload and download bandwidth according to
www.speedtest.net was recorded. The loading times and the average frame rate over the first
minute were recorded for a variety of rendering situations ranging from a single polygon to all
422 polygon faces available from the database. As expected, the frame rate and the loading times
were directly affected by the hardware used to run the program. The HTC Nexus 9 tablet
consistently came out leading the pack, rendering all but the most complicated scenes with frame
rates over 30 frames per second and loading times on the low end of average. On the other end of
the spectrum the Apple iPhone 5 and iPad were unable to complete all the tests, failing when the
model was presented with too many polygons. When these devices did function, they were
sluggish and unresponsive, barely managing ten frames per second on the 422 polygons test.

The variance in location, meant to allow for comparison of data on various connection
strengths, quickly revealed that the network connection speed, so long as it remains above a
modest 20 Mbps, is not a significant factor in the rendering of a model. As of March 15, 2015 the
average internet speed in the United States of America is 33.9Mbps according to Ookla, the
company behind www.speedtest.net (used in our tests). [Average... 2015] This being the case,
our research became easier as we did not have to put as heavy an emphasis on the connection
speed data, and revealed to us that the vast majority of the latency that we experience when
rendering our model is the fault of the code, not the latency caused by an internet connection.

After noting these results and recognizing that users of mobile devices expect speed, it
was proposed that another rendering scheme be devised, resulting in an implementation of a
dynamic rendering method. additional tests were performed using a dynamic rendering method,
starting at 36 polygons and ending with 103 polygons. The same data was recorded, although it
should be noted that the loading time data in this case represents the time that a user would have
to wait from loading the page to the time that they could begin to interact with the model.
Portions of the model are rendered based on the user interaction. During the test, a new set of
data was rendered when the user moved a distance of 50 units. Page load time significantly
improved when comparing this new data with data gathered when rendering all of the images at
once. Dynamic rendering method improved page load times by 64.66% across all devices over
sending the data in one large package. The HTC Nexus 9 saw the greatest improvement, moving
from an average of 1016.5 ms to 297 ms, a 70.78% decrease. These changes produced an
average decrease in frames per second of 28.97%. This decline can be accounted for in the
processing: each batch of data is added to the scene directly after it is received. This means that
while the dynamic rendering solution will reduce page load time, each batch of data must be
processed as they arrive, cutting into the computational cycles that can be dedicated to rendering
frames. In the end we are using the same number of cycles to add the new portions of the
geometry to the scene, simply shifting when they occur.

A system was implemented to preload the data needed to be sent in the initial JSON
object so that no time is wasted between the AJAX request being sent and the JSON being
received by the client. This was implemented with the hope of driving page load time down even
further, and the data gave surprising insight into how the page load time can be broken down into
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the different stages of communication between the server and the client and the client rendering
the data. To establish a baseline, the preemptive load functionality was implemented in the single
polygon test used earlier. This version of the server effectively provides information about how
quickly it takes the server and client to communicate with near empty data. The average page
load on the original single polygon test was 343.9 ms. After changing to the preemptive loading
version of the server, average page load time decreased to 322.6 ms. Additionally, one should
remember that there is unavoidable variance in communication time caused by radio
interference, unrelated network traffic, and communication bandwidth being used by the device
for background processes, all of which contribute to the range of speeds that we experienced in
testing, a total range of 78.35Mbps. This 6% decrease in load time was a modest efficiency gain,
but could be ascribed to variance in connection strength and network noise. To follow up on the
inconclusive results, further tests were implemented in the dynamic loading version of the server,
as well as in the 422 face version. After a second round of tests, we found that the decrease in
page load time did in fact scale with data size, with the page load time decreasing by an
astounding 73% when preloading the 3D information of all 422 faces in the large test server
[Figure 6]. While the idea is reminiscent of server-side rendering, it is instead simply an
efficiency gain through reducing time required in reading files on the server and moving the data
to memory, which is much faster than accessing the disk for every bit of data.

Conclusion

Future work would focus its efforts on optimizing the data being transmitted to the user.
Of the possible optimizations, the compressing of the polygon mesh would allow for more
efficient streaming. One method used by [Tang et al. 2010] is using edge collapse and vertex
split. Research into this topic could also focus on the optimization of the server data structure,
making a robust system that goes beyond the simple text files that were used in these trials.

The base expectation of the work was a 3D model rendering on the web. This task,
previously immensely challenging, is now easily completed for basic models using a
client-server relationship written using Python and JavaScript. Assorted devices rendered the
model with varied success, upon seeing the results, some modest optimizations were
implemented. Using dynamic rendering proved to be both quick loading and allowed for FPS
averages at levels more than useable. Pre-encoding some of the data that the server would have
to frequently use further increased the speed of loading a page. These simple optimization
strategies pushed the program beyond satisfactory on the majority of devices, and increased
usability on all platforms.
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Appendix
Figure 1 - Terms

contour - a tile converted to 3D, the contour is a single plane in 3D space.

face - one plane of a 3D object.

image - a set of 3D data that is used to create tiles and contours, also used to texture a set
of contours. Images come in pairs, one image’s worth of tiles refers to all the tiles (and
therefore, contours) that appear in that image.

texture - the image displayed on a face, taken from an image.

tile - a representation of a 2D planar object.

Figure 2 - Test Platform Information



Device

iPad Air

Lenovo
NS585 Laptop

Samsung
Note 4

Google
Nexus 9
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Zenfone 2

Workstation
PC

iPhone 5

OS Version Browser

105 9.2.1

4.2.5-1-AR
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Linux)

Android
5.0.1

Android
6.0.1

Android
5.0.0

Fedora 22

105 9.2.0

Chrome

Chromium

Chrome

Chrome

Chrome

Firefox

Chrome

Browser
Version
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7

47.0.2526.10
6

47.0.2526.83
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3

47.0.2526.83

43.0.3

47.0.2526.10
7

CPU

Dual-core 1.3 GHz

Cyclone

AMD E1-1500
2.7 GHz Quad-Core

Processor

Nvidia Terga

Dual-core 2.3 GHz
Intel Atom Z3560

@ 1.8GHz

Intel® Xeon(R)
CPU E5-2665 0 @

2.40GHz x 4

Apple A6

Dual-Core 1.3GHz

GPU

PowerVR
G6430

Gallium 0.4
on AMD
PALM

Adreno 420

Kepler DX1

PowerVR
G6430

Gallium 0.4
on NVC3

PowerVR
SGX
543MP3

[GB]



Figure 3 - WebGL Primitives
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Figure 4 - Dynamic Rendering vs. Standard Loading (not pre-encoded) (103
Polygons)

Standard Method
Device Average Page Load [ms] Average Frame Rate [FPS]
Samsung Note 4 1437.25 21.08
Google Nexus 9 1016.5 49.0025
ASUS Zenfone 2 1997.5 44.6375
Dynamic Method
Device Average Page Load [ms] Average Frame Rate [FPS]
Samsung Note 4 634.25 33.5875
Google Nexus 9 297 36.8325



ASUS Zenfone 2 605 28.7475

Average Frame Rate - Standard vs. Dynamic
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Figure 5 - No Optimization Data: 103 Polygons

Device Average Frame Rate [FPS] Page Load Time [ms]
iPad Air 10.425 1292.25
Lenovo N585 Laptop 10.03 914.25
Samsung Note 4 21.08 1437.25
Google Nexus 9 49.0025 1016.5
ASUS Zenfone 2 44.6375 1997.5
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Workstation PC 16.01 461
iPhone 5 7.13 2699.666667

Figure 6 - No Optimization Data: 1 Polygon

Device Average Frame Rate [FPS] Page Load Time [ms]
iPad Air 288 55.355
Lenovo N585 Laptop 197.5 57.34

Samsung Note 4 501.25 59.3275
Google Nexus 9 217.75 59.7125
ASUS Zenfone 2 557.5 58.0125
Workstation PC 210 329

iPhone 5 517 58.85

Figure 6 - Page Load Time: Pre-encoding vs. Standard

Standard Page Load Time vs. Preencoded Page
Load Time
20000 I Standard
16386.8 B Freenco.

14595 5
15000 129172

10000

Fage Load Time [ms]
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Samsung MNote 4 Google Mexus 9 ASUS ZenFone 2

Figure 6 - No Optimization Data - 422 Polygons
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Device
iPad Air
Lenovo N585 Laptop

Samsung Note 4
Google Nexus 9
ASUS Zenfone 2
Workstation PC

iPhone 5

Average Page Load
[ms]

Crash
3204
4664.5
3077.75
7227
1858
11695.5
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Average FPS
[ms]

Crash
4.77
8.3625
19.33
34.8225
15.85
2.475



