

A Novel Multi-touch Authentication Scheme for

Mobile Devices

Dicheng Wu

Department of Mathematics and

Computer Science

South Dakota School of Mines and

Technology

Rapid City, SD 57701

Dicheng.Wu@mines.sdsmt.edu

Mengyu Qiao

Department of Mathematics and

Computer Science

South Dakota School of Mines and

Technology

Rapid City, SD 57701

Mengyu.Qiao@sdsmt.edu

Abstract

The enhanced performance and reduced cost have made mobile devices deeply penetrate

into daily life and reform people’s habits in modern society. While people enjoy the

convenient services and diversified contents provided through mobile devices, the

prosperity of mobile device also leads to serious security concerns in mobile devices.

User authentication plays an indispensable role in protecting computer systems and

applications from unauthorized access. Many user authentication methods have been

proposed and implemented to protect desktop computer system, but do not provide

optimal security and convenience for the new generation of touchscreen-equipped

devices. Therefore, there is especially high demand for a new user authentication method,

which achieves high accuracy, usability, compatibility, and low cost for mobile devices.

In this paper, we present a novel touchscreen-based authentication scheme that utilizing

both static and dynamic features generated by different hand's gestures. We collect raw

data including position, size, pressure, time of each individual touch-point generated by

fingertip movements which correspond to distinct characters of gestures of different

users. Then, we convert raw data to static and dynamic features to achieve accurate

pattern recognition. Several volunteers are invited to help experiment the proposed

scheme and collect sample data by performing different gestures for multiple times on

different touch-screen devices. Afterwards, we run statistical analysis to identify

discriminative features to reduce the complexity and enhance accuracy for classification.

In the end, we apply and compare various machine learning approaches with selected

features to build stable and robust classification models. As a proof-of-concept, a mobile

app is developed to implement the proposed scheme for android tablet due to its API and

hardware supports. When a user uses this app at first time, the app will ask the user to

1

sign up an account. Then, it leads the user to a sign-up screen and asks the user to enter a

unique username and an email address. In the next step, the user is directed to another

screen where he/she can select a preferred picture as the gesture background. Then, the

app asks user to perform a gesture for three times to obtain initial gesture pattern data. In

meantime, it also tests the similarities among the gestures. If an unstable pattern is

detected, it will ask user to redo the gesture until the similarity meets pre-defined

requirements. After successful registration, the user can sign in with the username and

secret gesture. Each gesture will be evaluated by the classification model associated with

the user account. Empirical research and experiments show that the proposed scheme

overcome the drawbacks of the existing methods, and achieve high accuracy and

usability for user authentication. Therefore, we believe it has great potentials to provide

secure protection for systems, applications, and data in touch-screen equipped mobile

devices.

2

1 Introduction

The enhanced performance and reduced cost have made mobile devices deeply penetrate

into daily life and reform people’s habits in modern society. The attention and popularity

gained by mobile devices are dramatically increased in recent years, and lots of existing

IT companies tend to extend their products to mobile side in addition those tons of newly

established companies solely focus on developing software on the mobile side. In

consequence, a certain amount of people gradually switches their primary platform from

PC to mobile devices and lots of sensitive data generated by those users is moved and

stored in the mobile devices. However, people enjoy the convenient services and

diversified contents provided through mobile devices, the prosperity of mobile device

also leads to serious security concerns in mobile devices. It motivates those

manufacturers of mobile devices to bring verities of solutions in order to resolve various

security issues and protect users from malicious attackers. For example, Apple provides

the product with a Touch ID which is a fingerprint recognition feature thus only the

owner of the device can access it. The drawbacks of this scheme are it requires additional

hardware to support this kind of feature and also it is not impossible to copy the

fingerprint from the owner. To mitigate this kind of disadvantage, we developed an

application based on android that does not require additional hardware and utilizing static

and dynamic features of users therefore make the replication of user’s identity more

difficult.

2 A User Authentication Application on Android

The application is mainly developed and tested on Google Nexus 7 tablet PC, and it

provides a touchscreen-based scheme to authenticate users. To build a robust

classification model, it is necessary to collect raw data which contains x-y points,

pressure, size and time from users’ gesture drawing and we directly get those data by

using motion event function in Android touchscree API and then store them into a mobile

database. Then the idea is to utilize the static and dynamic features that extract from raw

data to and lately feed those features to classifiers to verify whether the current user is

legal when they are performing different gesture. If the user’s identity is verified, the

classifier will classify the user into self-class which is denoted by 1 otherwise it will

classify the user into non-self-class which is denoted 0. More specific, those features are

distance, angle and pressure. Each finger has its own feature set that comprises5 features,

and thus there are totally 25 features for each hand gesture. All those features are

calculated in real-time and are based on raw data extracted from user gesture, after the

calculation, the data is stored in database for classification usage. The flowchart of

program is showed below.

3

Figure 1: The Flowchart of the Application

In order to use the app, a user should have an account. If they don’t, they will be asked to

enter a unique username that has not been used before, because one device can be

4

registered by several users and there may already have username registered by someone

else. Afterwards, they are going to be asked to perform gesture drawing multiple times

while calculating the features and later on the application will evaluate the similarity

among those drawing based on features by applying Euclidean distance. The application

would reject the drawings if the similarity is below the threshold, and then ask user to

redraw. If the registration is successful, the features will be stored in database for later

verification usage. As long as user has an account for this application they can sign into

the system by drawing the same gesture and the features extracted from user will be feed

to classifier in order to determine whether current user is genuine or not. The user will be

accepted if they are classified as self otherwise they get rejected by the system.

3 Features Details

The features currently being used are distance, angle and pressure, and additional features

will be added later. .

For the distance, we measure the length of tracks that user performs, and it is calculated

by using distances between each pair of adjacent points and the summation of each

individual distance to the total distance. The formula can be expressed as

 . The symbol i is the

number which assigned to each finger from 1 to 5 and symbol j is the nth-of-points which

is from 0 to number of total points - 1. is jth points on number of ith finger.

Figure 2: The One of the Tracks Generated by Gesture Drawing

For the angle value, it is calculated by measuring the angle of vectors that connecting

points at certain interval, and then compute the accumulation of angle changes for the

entire track.. The main reason of not using angle value between each two point is because

it has some kind of perturbations which affect the result became too large and uncertain.

Instead, we choose adjacent points and add up angles between those points. In this

application, the point is calculated after the distance of track is calculated and it take

points at certain percentage of the total distance. Here, we use 7.5%, 15%, 22.5%, 30%

up to 100% as the cutoff points. The angle value is calculated by the formula of

 , and it takes every other cutoff point to do the

calculation by using arc tangent. The primary reason to do in this way is the density of

points on the track differs on each location which may result in the percentage length

5

largely differs from each other and it is inaccurate to just use adjacent pairs to calculate

angle value. Therefore, we decide to use every other cutoff point as the angle value

calculation reference.

Figure 3: The Scheme of Angle Calculation.

 After the each individual angle value has calculated, it needs to sum all those angle

difference values and to get the accumulate angle value. The formula can be written as

. It calculates the

difference between successive angles in order to get the angle changing rate and then add

them up.

For the pressure, it is easy to distinguish among different users since they tend to have

different fingertip pressure, and it directly use the raw data extracted from user and make

the averaging pressure. The formula can be written as

 . The n is total point and it adds up

all n pressures and is divided by n.

4 Similarities Measuring

The similarities measuring is crucial for the application since the system has judge

whether the gesture drawing meets the requirement and keeps the data consistent in order

to get better perform in the training process. Here we adopt the idea of using Euclidean

distance for the similarity checking. The formula can be written as

 , where i denotes finger

index and j denotes feature index. The application will ask the user to redraw a gesture if

the similaritie is below the pre-defined threshold.

5 Finger Numbering

Another thing needs to be solved is finger numbering, since the motion event function

labels finger by order of timestamp that finger touches on the screen. In other word, the

fingers will be assigned label from 1 to 5 solely dependent upon the order that fingers

touch on the screen. This would make the inconsistency of same finger labeled different

number at different times, because the order of finger that touched on the screen will be

6

likely random. In order to resolve the inconsistency, it is necessary to introduce a scheme

that makes a stable labeling at each time. However, it is hard to directly manipulate on

motion event function and make it acting the way we expect. Therefore, we decided to

relabel the pre-labeled fingers in the way that assigns the labels by the real finger order.

We discover that at each time when the gesture drawing is performing the thumb has

largest distance towards the rest of fingers.After the thumb is determined, it is relative

easy to figure out the rest of fingers.

Figure 4: The Way to Calculate Distance in Finger Numbering Scheme

In the figure above, the circles illustrates the first location that each finger touchs the

screen, and the thumb is labeled as 1 and the rest of fingers are successively labeled from

2 to 5 clockwisely. We calculate the summation of distance of each finger to the rest of

fingers and choose the finger which has biggest value of summation of distance as the

thumb. The formula can be wrritten as

, wherei denotes current

point and j denotes rest of the point.

6 Training Process

This is still in processing and we expect to complete it before the date of conference. We

firstly gather data from different volunteers and ask them draw certain gesture on the

screen then store feature data to the database. Afterwards, we extract those feature data

from database as negative sample and our own drawing as positive sample and split them

into training set and validation set. Since we only have limited number of sample and in

order to determine the best training set, we choose to do the n-fold cross validation and

pick the set that has highest as our initial training sample. For the classifier we choose to

use SVM as our primary classier and the reason is it is easy to manipulate and less-prone

to overfitting compare to neural networks since it is a convex optimization process while

the neural nets suffers from local-optima and also it is more computational cheaper when

the number of features grow. We also consider using the data augmentation on the

sample data by applying Gaussian noise on the raw data in order to get more number of

7

set of features. All training work is done offline and we plan to move this process to the

mobile-side which will perform real-time training process when user registers an account.

7 Implementing Details

The program consists of two phases, registration phase and authentication phase. If the

user doesn’t have an account, he or she needs to sign up first. We use activity as

container for the main page and design GUI on xml file. The main page provides the

ability to user to sign into the system by proving a valid account and sign up a new

account by clicking sign up button. It will check the database whether the entered

username is existed, if so, it allows user to advance to the gesture drawing page otherwise

it pops up the username does not exist message.

Figure 5: The Main Window

Once the user clicks the sign up button on main window, the application brings the users

to the registration page which made up of textedits, textviews and a button, which allows

them to enter the username and email address they want to use. It will pop up username

already exist if user tries to use a name that already in the database. The user can click

next button for next step when they are finishing fill out the information.

8

Figure 6: The Registration Window

The user will be leaded to the image selection page which made up of thumbnails of

available background image, which allows user to customize the background when they

performing drawing. The purpose of this idea is to provide the user a reference which will

help them to remember what position and shape they have been drawed last time and

make the drawing more consistent and thus reducing the number of redraws.

9

Figure 7: The Image Selection Window

The selected image will show up when they perform gesture drawing. The app also

displays lines with different width along the touch tracks, and the width is dertermined by

the pressure the user puts on the screen. The width is computed as

 . The reason for assigning a small factor to

pressure is manly due to the fact that the device sometimes cannot record pressure very

accurately.Intially, we implement it by using view and use ondraw to update the draws

without using any preprocessing. We create a class that stores x-y coordinate, size,

pressure and time, and vectors contain thoes objects. Each vector appends object

comprising points information when the user performs drawing at each motionevent

trigering. In the meantime, the ondraw function updates the graph according to the newly

appended objects. As the result, the performance is not satisfactory especially the area of

graph increasing because everytime the ondraw performs it needs to invalidate whole

graph and it results the performance reducation with the accumulation of graph elements.

The first attempt we make is to use partial invalidate with each induvidual finger instead

of updating whole screen. To achieve this goal, we need to pass a rectangle with certain

area as to invalidate function indicating the dirty region that needs to be updated. Since it

has total 5 fingers, it is necessary to keep 5 distinct dirty regions. We also find that when

calculating those dirty regions, the graph may consist of segements of lines with different

width, therefore the area of dirty region is dependent upon width of segements of lines.

To slove this problem, we develop a inflation function which will inflate the area of dirty

region according to the width. In the end, althouth it is faster than previous version, the

performance is still under our expection. The major reason is that the view has mutiple

layers and every time the application invalidate ondraw the request needs to pass mutiple

10

layers in oder to get graph updated. Thus we try to use surfaceview that is similar to a

lightweight view and with less layers which means it has better performance campared

with view. In order to use surfaceview, it needs to be ran in a sperate thread and with

proper starting and ending functions. In addition, it is convenient to keep 2 canvas, one is

for surfaceview and another is for main thread. In the surfaceview, we use a canvas to

draw another canvas, which is updated on the main thread, onto the bitmap that contains

the whole graph, the advantage to use bitmap is it is more efficient because it only need

draw the current updated elements and all previous drawed elements are already store in

the bitmap. In the main thread, it updates its canvas at everytime the motion event

function is triggered. When the motion event is trigered, the surfaceview will start update

its canvas by using canvas in main thread. We also set a frame limition in run function to

prevent the thread blocking and keep a update flag for update canvas only once when the

canvas in main thread is updated in order to prevent the graph from defroming. After all

those modifications, the application performance is dramaticly improved. Finally, the

user can perform gesture drawing.

Figure 8: The Gesture Drawing Window

8 Conclusions

In this research, we studied the multi-touch user authentication scheme for touchscreen

equipped mobile devices, and developed an android application as a proof of concept.

The primary work focused on investigating touchscreen hardware and API performance,

and enhancing the efficiency and accuracy of data acquisition and processing. The

preliminary results show that the proposed scheme achieve high accuracy and efficiency

11

for user authentication. The future work includes the application of difference machine

learning methods for pattern classification and the deployment of classifiers to mobile

platform in order to achieve real-time training and classification on mobile devices.

References

Qiao Mengyu, Suiyuan Zhang, Andrew H. Sung, and Qingzhong Liu. "A Novel

Touchscreen-Based Authentication Scheme Using Static and Dynamic Hand Biometrics."

2015 IEEE 39th Annual Computer Software and Applications Conference (2015).

