
DEVELOPMENT OF A MULTI TENANT WEB
APPLICATION INTO A SOFTWARE PRODUCT LINE FOR

TRANSIT SYSTEM SCHEDULE MANAGEMENT

Michael Carey, Derek Riley
Computer Science

University of Wisconsin - Parkside
Kenosha, Wisconsin 53144
carey012@rangers.uwp.edu

rileyd@uwp.edu

Abstract

Developing large, complex web applications that are easily re-deployable for new clients is
important to decrease the overall cost of re-deploying software. Further, easy deployment
increases maintainability of a complex system, so updates and additions to the original code are
often less difficult to manage if the code is easy to re-deploy. Since maintenance is often the
most costly phase of software development, it is important to increase maintainability of code to
reduce long-term cost and increase the longevity of software. Server-side application
deployment can be especially difficult and tedious because often many configurations and
adaptations are required to customize a software deployment for a new client. Software Product
Line (SPL) Engineering can provide a valuable solution to managing software complexity
through sharing common characteristics. This allows for rapid deployment for new clients, more
straightforward updates, reduced memory utilization, and straightforward backup increasing
maintainability. In this paper, we present development of a SPL for a server-side application to
manage a transit system database for use with a mobile application to help transit riders find out
when busses are arriving at stops. The server-side system we present is a web application that
allows users of various privileges to access, modify, and push updates of transit data to the
mobile applications to increase transit user knowledge. The server-side application contains
many complex, interrelated components and includes an automated deployment system
developed for new clients through the use of hierarchical user privileges, and database
manipulation. Our application utilizes open source software, builds upon the foundation of
privilege restriction, and adopts SPL patterns emphasizing the need for a customizable,
manageable product that can easily add new clients.

1. INTRODUCTION

Developing large, complex web applications that are easily re-deployable has significant
potential to reduce the cost of re-deploying software, therefore increasing reuse and
maintainability. Increased maintainability allows for simpler updates and additions to the
original code especially if the code is easy to re-deploy. Since maintenance is often the most
costly phase of software development, it is important to increase maintainability of code to
reduce long-term cost and increase the longevity of software.

Server-side application deployment can be especially difficult and tedious because often many
configurations and adaptations are required to customize a software deployment for a new client.
This challenge is further exacerbated in mobile and web applications where multiple platforms
must be supported with frequent updates for new standards, libraries, and operating systems.
Software Product Line (SPL) Engineering can provide a valuable solution to managing software
complexity through sharing common characteristics.

Multi-tenancy refers to the ability to use the same software or interface among many users, thus
isolating data and traffic [4]. Multi tenant applications share the same codebase, thus providing
reliable use of server resources while also allowing ease of updates cascading onto all tenants.
Since tenants also share a common database schema, it is possible to limit database usage as
well. This use of shared resources allows a single deployment of the system to serve numerous
users over several applications while also permitting the ability to add other sub-applications
with ease.

In this paper, we present development of a SPL for a server-side application to manage a transit
system database for use with a mobile application to help transit riders find out when busses are
arriving at stops. The server-side system we present is a web application that allows users of
various privileges to access, modify, and push updates of transit data to the mobile applications
to increase transit user knowledge. The server-side application contains many complex,
interrelated components and includes an automated deployment system developed for new
clients through the use of hierarchical user privileges, and database manipulation. Our
application utilizes open source software, builds upon the foundation of privilege restriction, and
adopts SPL patterns emphasizing the need for a customizable, manageable product that can
easily add new clients.

2. RELATED WORKS

SPLs have been developed for industrial mobile applications previously. A product line
architecture was developed for a role-playing game on an early smartphone that allowed
developers to improve performance and development speed through the incorporation of SPL
development methods [8]. Effective planning for SPL development requires familiarity with
relevant SPL methods and the core product being developed.
The reuse of software is an important SPL topic since the reuse of software is much more than
just reusing the code [8,6]. Even just the structure of an SPL may be of use in another
application. Though mobile applications tend to get the most attention to resource restrictive,

server applications can also be of restricted resources if large applications utilize space. Server
applications usually incorporate more intense backup which may result in error if applications
take up too many resources.

Numerous software programs aid in the development of site maintenance while permitting other
users to access resources separating the administrator from authorized users differentiating from
the anonymous user. Particularly, Content Management Systems (CMS), such as Wordpress or
Drupal, have built-in functionality for management of users. Though this type of system works
well in some application environments, many applications require a higher control over user
abilities and maintaining administrations. Atop the usual user hierarchy, many systems also
desire a super-user profile who can manage all users underneath, cascading privileges down the
hierarchy tree.

SPL development requires planning and has been analyzed from different perspectives including:
asset developer [3], requirements engineer, and product developer [2]. However, the application
of method engineering SPL approaches have encompassed a more comprehensive view of the
software to improve consistency and alignment with business goals for the software [2].

3. DOMAIN AND CHALLENGES

Bus systems transport over 50% of the public transportation audience and the number of people
using these facilities has been increasing drastically [1]. A majority of these systems are funded
by municipal governments funded by local government support, federal grants, and fares [7].
Much of the core features are common or standardized among bus systems, therefore benefitting
from SPL focus. Identification of the common characteristics creates the potential to automate
software deployments easing the workload that is put on the transit system employees and
improving the information available to riders.

Transit systems rely heavily on paper schedules to relay route information to pedestrians. The
predetermined routes are printed in brochure or poster format and cost the transit system large
expenses to reprint and redistribute when changes happen. Digital technology can decrease the
costs to change the schedule and with mobile technology allow real-time changes, such as
delays, to be addressed to users.

Transit systems tend to maintain their own website where schedules and transit information can
be obtained. Though this is a valid solution to portray information, systems without the
resources may have out-of-date methods for portraying this information, such as hard-coded
schedules that require manual changes and static cascading style sheets that prevent smaller
screens from reading schedules. Using a website as a means of collecting transit information
may be troublesome for mobile users if the schedule information is not within the “Three Tap”
rule - any content should be accessible within three taps of menus/links - causing distress if the
user does not know where to look. This results in numerous amounts of phone calls to the transit
system every day from riders desiring time or routing information.

Some transit systems implement mobile applications or texting services that can aide the
dispatchers’ valuable time. Google Transit is a service provided by Google that provides users

with information on how to get from one destination to another via public transit, walking, and
bike paths. Of course, this material must be provided to Google via General Transit Feed
Specification (GTFS) [5].

An existing mobile application and web management tool for managing transit information was
developed as part of a class at UW-Parkside. This solution provides the means of editing route
information and exporting to GTFS that can be sent to Google to update Google Transit. This
implementation has been built with the intentions of running one tenant with multiple users. The
manager is used as a platform for updating the mobile application that feeds information to users
about transit schedules. More deployments have been implemented since the original software
was written, necessitating the need to improve the deployment process when the software is
redeployed for new transit systems [7].

The original application benefits further from a multi tenant solution because of the automated
deployment incorporated into the manager system. When a new mobile application is to be
deployed, a server deployment can be setup with minimal effort. This leaves less time required
for actually deploying a new tenant and thus more time for adding features to the application.

4. MULTI TENANT SOLUTION

A multi tenant application must have a structured way of managing users and ownership of data
within the application. Without such, any user may perform restricted processes such as
deploying a new tenant. Similar to the UNIX user system, we implement multi-tenancy
privileges in a hierarchy where users are associated in groups limiting their access to data and
functions.

At the top of the hierarchical privileges is the super user – in this case, the owner of the manager
system. The super user has the top ruling over the system allowing administrators within tenants
who can then administer their own environment. Through this distribution of privileges, the
super user is relieved of maintaining every environment but rather the system as a whole and
creating new environments while leaving the administrators to their own realms. That is, the
super user is responsible for building new deployments whereas the tenants themselves are
responsible for only their deployment. Administrators of a deployment may create other users
equal to or beneath their privileges and are responsible for editing information on their own
segment of the system. The super user should only need to modify a deployment if a problem
were to arise, such as passwords being forgotten, again much like the UNIX user system.

Placing the super user at the top of the privilege hierarchy gives the deployer the highest
functionality on the site while restricting the administrators to their domain for their agency.
These elevated privileges allow the deployer to add another agency easily without redeployment
of code by simply adding configurations for an agency. With administrator privileges, each
agency may manage other administrators, authorized users, and basic users within their own
agency allowing each agency to maintain their own realm and the super user to maintain the
system as a whole. With each new deployment comes a new database both for restricting
privileges distributed over agencies and for easier backup. Hierarchy of database user privileges

and database tools further restricts agencies to their own realm. Separate databases allow the
application to protect their own assets and avoid accidental overwrites of another agency’s data.

4.1 Product Architecture

Our SPL design uses an already existing OSS framework revolved around Object-Oriented
Programming (OOP) allowing us to extend core functionality, thus permitting the manipulation
of an existing application with minor modifications to the code. This method of indirect
manipulation of core functionality allows us to continue with a modular design and opens
opportunities for adding tenants to pre-existing applications with little code modifications. We
also can build a base incorporating multi tenancy for future applications, which can then be built
off this architecture. By developing our solution modularly, we can simply place the code we
have developed into the packages and enable them properly.

Rather than modifying framework core objects directly, we instead extend these core objects to
build upon our own functionality that can be used as core. This allows us to overwrite -
changing the function’s definition - without having to change how the framework calls upon
items. This allows us to place the code in a pre-existing application without changing every call
made to framework defined functions. Moving to a newer version of the framework results in
simply replacing current framework code with the newest version with minimal errors from our
current applications configurations.

This case study uses a Model-View-Controller (MVC) pattern for development. This would then
include a way to distinguish models from views and controllers. In an OOP MVC, a base object
would be extended from to express the differentiation. We call the base controller object
Base_Controller, and any controller built will then inherit from this object. Instead of having the
custom controller inherit from the Base_Controller, a custom controller, Common_Controller,
extends from Base_Controller and thus every model used now inherits from
Common_Controller. This allows the functionality of the Base_Controller to be extended into
even more common functionality related to the application. The Common_Controller can then
autoload the User_Model, which contains the functionality used for logging in, creating new
users, etc. This allows any controller to use the User_Model functionality when desired. Figure
1 demonstrates the flow of hierarchy used by the Common_Controller.

Figure 1: Common_Controller UML Diagram

4.2 File System

Frameworks usually consist of a file directory structure that must be maintained for use with the
application. When multi tenancy is incorporated into this structure, we take into consideration
the resources that should be kept consistent among tenants and which resources should vary by
tenant. With this in mind, we also manage the file system differently by requiring a dynamically
built structure.

In our implementation, a tenant is given their own base directory that can hold individual
resources and data. We use the concept of skeleton directories to initialize a new tenant’s
directory while also using the idea of templating to configure these files accordingly. As well as
influencing consistency of the file structure, the production of a tenant’s file structure is also very
flexible. We have the ability to manage this file structure differently according to system-wide
configurations, which dynamically decide where files fit.

Taking principles from the UNIX user system, we set environmental variables to aid in tracking
which user is currently being used but still maintain a layer of security by confirming this data
within the database. To track which tenant is being used, we identify a unique identifier that is
known by all PHP scripts that can be used in requests for files or URIs. Since uniqueness is the
key component in this configuration, it would seem the best solution would be to identify by the
tenants directory, which by the rules of the file system, must be unique. Without this session
management, users may simply change their URL to enter a different tenant’s environment
causing a authorization bypass.

4.3 Database Structure

Database resources need to be highly secured sectors of web development since databases are
some of the only efficient means of storing “permanent” information. Within these important
resources include confidential information on users such as their passwords. Therefore, we must
consider the security implications of sharing database information. Every database program
manages access in different ways but to conform different database schemas, it is best to
maintain for a generic database format.

The database usage is easiest maintained by creating a user for each tenant and restricting user
privileges in the database. This ensures that if a user were to find a way out of their own realm to
run their queries against the database, they are still restricted so they cannot get user credentials
for example.

Due to configuration issues, particularly the problem when the application owner does not have
proper permissions to allocate certain details, the database structure has two potential forms. The
implementations involve running a single database restricting users access based on stored
procedures or running multiple databases sharing a common database which tracks users and
other databases.

4.3.1 Single Database Using Stored Procedures

Typically an application receives a database and a user to access this database. The desired
database management would include one database with base tables shared amongst users defined
by one key. By maintaining one database and shared base tables for all users, the database can
be managed as a whole, cascading updates to the database schema throughout. Then, to restrict
users access to their own realm of the database, stored procedures would perform the necessary
insertion, update, deletion, and selection of database columns.

Though this implementation is desirable, it requires the higher, administrative permissions to
grant users’ permissions on specific stored procedures. This database variation allows easy
backup of the entire system but requires a more sophisticated backup if each agency desires a
separate database backup. This variation also limits the amount of database files on the system;
however, permissions become scattered and harder to replicate.

This method of implementation seems fitting for a server maintaining multiple applications at
once where manual operations are typically run by administrators. Granting permissions to
specific users to specific stored procedures aides in constraining the abilities of a database attack
since raw SQL cannot be injected into a stored procedure. This implementation leads to more
restricted permissions scattered amongst many application database users, but leads to highly
constrained application users.

4.3.2 Multiple Databases Sharing a Common Database

Another database option is running a single shared database with multiple databases cross-
referencing the shared database. This option requires more attention for creation and updates.
Besides requiring a new user to be created prior, a database must also be created with all needed

permissions granted to the user. This approach helps limit the amount of grant statements run on
a database while also restricting the user information to a separate database and user. With a
fresh database, tables can be created with a schema provided matching the desired format.
Triggers may be maintained on these tables to permit default values or rather force values on a
table. By using database triggers, we can eliminate the need for pesky cross-database foreign
keys by enforcing the desired key onto the database instead. This approach allows the easy
backup of individual tenants but harder for the system as whole.

Though this approach restricts the user to a particular table, it can lead to numerous tables
running identical schemas. This approach emphasizes the update process, forcing all databases
to run the same update process on them. This work would include generalizing the database
updates and be forced to run on all databases likely by one user that would push to all. Thus
suggesting a single database user with the ability to run commands on all databases. A catalog of
databases would need to be maintained to push the updates on all versions.

4.4 Shared Resources

Some resources such as Javascripts and Cascading Style Sheets (CSS) must be made public to
allow the Web browser to render appropriately. These resources are typically kept in a different
area to help differentiate between the public and private. Due to the hierarchy of the framework
used, a directory on the project root serves as the place for shared resources. This resource pool
originally included resources such as uploaded files and exported files. These resources were to
be requestable by mobile applications specific to the tenant. These resources were more suited
for the individual directories created for the tenants.

To accommodate the drastic change in file structure, a resource helper was incorporated to aide
in the management of resources. This resource helper takes a configuration that dynamically
builds functions thus allowing resource path and urls to be determined at runtime rather than
static allocation. This allows the file structure to change dynamically without causing the
application to crash. This dynamic allocation of resources allows the application to also
distinguish which resources will be consistent amongst tenants thus providing individual
resources to also be included with this functionality.

5. EASE OF DEPLOYMENT

Deployment of an application can be a particularly painful process: loading proper
configurations, manipulating files and directories, and testing for consistency and stability. This
process can be tedious and troublesome when re-deploying the same application with different
configurations. Ideally, a deployment involves placing a codebase and it just runs; however, this
is typically not the case. The deployment process is best left to automation which can improve
efficiency and spare an administrator large sums of time attempting to deploy by hand. Of
course even with automation the administrator should assure the deployment was successful and
may need to fix some configuration problems by hand.

5.1 Initial Deployment
The application we use as a case study in this paper, had an existing codebase that first ran static
variables that were converted to configuration files on the second tenant deployment.
Configurations made the application easier to deploy fresh installs of the application on a server;
however, the installation involved re-deployment of all code with minor changes to configuration
files. When two tenants were to run on the same server, the code is side-by-side without sharing
any resources making further deployments even larger storage wastes.

When an update needs to be made to the code, an update has to be made on each deployment of
the application essentially by re-deploying the code and tossing in the desired configuration files.
This exhaustive method requires each deployment to be placed, tested, and fixed until working.
The same changes made on the first deployment must be made on the next and so on.

When a new deployment is to be placed, certain files must be placed in the correct location for
the application to work correctly. Special directories are to be built upon deployment for
placement of resources. If these directories are missing, the server will not allocate the resources
and logs would fill until properly fixed.

5.2 Automated Deployments

To ease the deployment process an automated deployment system was created to mimic the
manual deployment process. Not only does automating the process significantly reduce the
amount of time spent to complete, but also gives the control of creating tenants over to a user
who may be unfamiliar with the manual deployment process. The automation process allows a
user to identify the core assets that need to be used in the process for the configurations and the
program takes care of the rest. This process will build files and tables consistently with little
error and no experience required.

Figure 2 displays the form that is displayed only to the super user when attempting to deploy a
new tenant. The form uses this information to build the foundation of a new deployment:
building a database for the tenant, adding the tenant to the list of tenants, and building a directory
and structure for the tenant. Figure 3 demonstrates the tenant being added to the list of
deployments.

Figure 2: Automated Deployment Form

Figure 3: Automated Deployment Complete

The automated deployment system was built with the ability for configurations. The build of a
tenant takes configuration files to identify how it should build accordingly. The three major
portions of the configuration involve defining what fields to collect and what fields are to be
required, what and how the database should build given some parameters, and what the file
structure should look like for a tenant’s directory. In fact, these three simple steps can be used to
build a variety of application suites that desire tenancy. The process itself could possibly be
integrated in another environment requiring similar circumstances.

7. LESSONS LEARNED

Security was considered one the highest priorities for this project. Though the data was not
confidential or sensitive, it was desirable to prevent tenants from accidentally causing other
tenants issues such as overwriting their data. It was determined the best way to prevent a misfit
user was to treat them like an attacker who attempts to break outside their own realm. Some
information security tactics taken include least privileges, session tracking, and segregation of
duties.

At the lowest end of the system for this application is the database and operating system. The
database had to be restricted so that users could only access their own data. It was decided each
tenant was to receive a single database user and restrict their access accordingly. If a single
database is to be used, stored procedures would constrain what SQL commands are run,
preventing SQL injection and dynamically-built queries.

If multiple databases are to be used, stored procedures would be a nice addition to the
restrictions, but at least if granting access on only one database, problems are contained within a
single database. By restricting how a database can be used, it prevents poorly written code and
missed bugs from allowing a user undesired access. Users would also be restricted on their
access to the operating system though this is less restrictive on the programmer. A separation of

private and public resources were designated and htaccess files were written to prevent certain
requests from being executed.

Within the application itself, privileges had to be determined to avoid users from running
processes outside their abilities such as deploying a new tenant. User management was already
implemented in the given application; however, it seemed to be constructed in a rush. Cookies
maintained easily modifiable fields that determined user and realm of which neither were logged
or stored in the database. Session tracking has been implemented to prevent a user from
modifying their cookies and all logins have been logged to prevent session hijacking.

Through the implementation of security features and restrictions, one can see how difficult it can
actually be to prevent misfit users and attackers from running rampant while also not restricting
legitimate users that need tasks to be completed. One may also notice through the
implementation of multi tenancy, how the necessity for ease of use can shift quickly on
programmers for the necessity of security and configurability. Multi tenancy is better built upon
the foundation rather than atop a pre-existing application. The development of multi tenancy
from the start allows better-implemented security features, configurations, and software design.

8. CONCLUSION

The application of multi tenancy can provide better use of resources and provide easier means of
updates to software deployers. Multi tenancy can include common characteristics provided to
individual tenants that allow the efficient use of configuration and schematic updates throughout.
This efficiency can lead to automation of deployments and limit the amount of errors that occur
in a deployment. Limiting the amount of time that is spent on deployment and updates leaves
more time for improving code and adding features.

We believe this SPL design could be further adapted to provide multi tenancy onto other
applications. The already configurable design could be further generalized to work with any
application with minimal changes. A modular version of this design may prove useful for
designing new applications that require these capabilities.

CITATIONS

[1] American Public Transit Association 2014. 2014 Public Transportation Fact Book.
Washington D.C.

[2] Chastek, G., Donohoe, P., McGregor, J. D., & Muthig, D. (2011, August). Engineering
a production method for a software product line. In Software Product Line Conference
(SPLC), 2011 15th International (pp. 277-286). IEEE.

[3] Clements, P., & Northrop, L. (2002). Software product lines: practices and patterns.

[4] Definition of Multitenancy - Apprenda. (n.d.). Retrieved February 17, 2016, from
https://apprenda.com/library/glossary/definition-multitenant/

[5] General Transit Feed Specification Reference. (n.d.). Retrieved March 21, 2016, from
https://developers.google.com/transit/gtfs/reference

[6] Martini, A., Pareto, L., & Bosch, J. (2012). Enablers and inhibitors for speed with reuse.
Proceedings of the 16th International Software Product Line Conference on - SPLC '12
-volume 1.

[7] Riley, D., Zygowicz, M., & Carey, M. (n.d.). A Case Study in Developing an Agile
Software Product Line for a Mobile Application. Submitted to FSE 2016.

[8] Zhang, W., & Jarzabek, S. (2005). Reuse without Compromising Performance:
Industrial Experience from RPG Software Product Line for Mobile Devices. Software
Product Lines Lecture Notes in Computer Science, 57-69.

