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Abstract 

Formal modeling, simulation, and analysis of complex systems is valuable because it can 

provide insights into complex systems that are too expensive or difficult to analyze 

otherwise. In this work, we present an approach for improving simulation trajectory 

choices in a Monte Carlo framework using a combination of crowdsourcing, machine 

learning, and data mining. We apply machine learning to analysis of a formal model of 

biodiesel production as a method of improving the efficiency of the crowd sourced 

mobile simulation analysis of the model. Data is collected and data mined in a central 

server where machine learning is applied and recommendations from the machine 

learning algorithm are fed back to crowd workers via suggestions on the mobile app. 

Ultimately, we show that this approach can improve efficiency of optimal safe state 

identification in the biodiesel model analysis. 

1 Introduction 

Modeling and simulation of complex systems holds great potential because it can provide 

additional information about a wide variety of complex systems that are otherwise too 

expensive or difficult to analyze using traditional methods like experimentation. Models, 

while imperfect by nature, can be improved and refined, and their analysis allows for 

extracting as much data possible about the system with the intent to improve 

understanding of the complex dynamics of these systems, and ultimately improve them.   

Biodiesel is an alternative fuel source that can be easily made by novices with an 

inexpensive home-made reactor using waste vegetable oil, but producing high quality 

fuel using a home-made reactor is difficult due to the complexity of the chemical 

interactions and the configurations of the processor.  A biodiesel processor is a complex 

system that can be modeled and simulated using formal modeling methods, but accurate 

modeling can require prohibitively expensive analysis [1].   

Formal modeling paradigms often restrict the types of dynamics that can be captured, but 

Stochastic Hybrid Systems (SHS) allow for the formal incorporation of discrete, 

continuous, and probabilistic dynamics, which allows for modelling of many realistic, 
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complex systems in a variety of fields including industrial systems, medical systems, 

biological systems, and much more [1].   

Due to the size and complexity of realistic SHS models and the complexity of their 

analysis data, it can be difficult to extract meaningful data from simulation or verification 

of such systems.  Complex dynamics of these systems can require exhaustive analysis to 

generate comprehensive insights into their dynamics, which is too computationally 

expensive for large systems.   

Analysis using simulations of complex models can reduce computational complexity, but 

choosing the right simulations to test to find desirable properties is usually done by brute 

force methods or via guessing.  Both of which are inefficient methods and can lead to a 

large amount of wasted computational time.   

In this work, we present an approach for improving simulation trajectory choices using a 

combination of crowdsourcing, machine learning, and data mining.  We apply machine 

learning to analysis of a formal model of biodiesel production as a method of improving 

the efficiency of the crowd sourced mobile simulation analysis of the model.  Machine 

learning algorithms are used to analyze the simulation data generated, as a part of data 

mining the simulation results.   

To alleviate the computational strain of our approach, the model is distributed on a 

crowd-sourced mobile platform via mobile application. Data is collected and data mined 

in a central server where machine learning is applied. Knowledge discovery is provided 

to the crowd workers in real-time by means of a suggestion generator. The suggestion 

generator analyses the user’s input variables and determines the reactants that limit a 

successful conversion of biodiesel. Actionable parameter tweaks are then provided to 

further improve their simulation scores.  The intent of this feedback loop is for the crowd 

workers to formulate intuitive conclusions from the provided example to then use on 

subsequent simulations runs to better explore the state space.   

Using our proposed Machine Learning and Data Mining (MLDM) techniques on the 

collected simulation data we can provide the user with a suggestion generator, delivering 

real-time input suggestions based on their previous simulation runs. This will in turn give 

the user further insight into the simulation and allow them to better understand previous 

simulations run by any user of the system, thus enhancing their natural pattern 

recognition capabilities. Ultimately, we hope to show that this approach will greatly 

improve efficiency of optimal safe state identification in the biodiesel system.   

2 Related works 

A parametric Machine Learning (ML) method is introduced for rule extraction of 

Recurrent Neural Networks (RNN) modeling deterministic finite-state automata (DFAs). 

The symbolic learning algorithm infers the underlying DFA by considering only the input 

and output behavior of the RNN [2].  As such the internal state and transitions are 

ignored completely. The learning algorithm has a polynomial time complexity causing 

scalability issues with complex systems. 



Multi-modal symbolic regression (MMSR) is a combination of methods that constructs a 

data-driven symbolic model of hybrid dynamical systems [3].  This technique uses non-

linear symbolic expressions for representing behavior and transitions using unlabeled 

time-series data. MMSR demonstrated the capability of inferring a hybrid dynamical 

system up to three discrete modes in a two-dimensional non-linear input-out mapping.  

When compared to a variety of neural networks MMSR achieved higher numerical 

accuracy with less free parameters [3]. The individual modes of the hybrid system 

underlying the unlabeled time-series data is determined by Clustered Symbolic 

Regression (CSR) which can be regarded as a generalized solution to learning piecewise 

functions by applying an Expectation-Maximization (EM) framework to Symbolic 

Regression (SR) [3].  

Through CSR the data is separated into clusters and then assigned mathematical 

expressions for each sub function. Transition conditions from one mode to the next are 

found by Transition Modeling (TM) which can be regarded as a generalized solution to 

classification with symbolic expressions [3]. TM searches for the classification 

boundaries and represents them as a symbolic inequality.    

Previous approaches share the same general goal of reducing simulation costs for 

complex model analysis.  The combination of stochastic simulation and model-checking 

is pursued to further understand biochemical systems [4]. Simulation is used to identify 

upper and lower bounds for specific species, molecular populations. The bounded species 

are used with PRISM model-checker to overcome the well-known state-space explosion 

problem while allowing temporal properties to be expressed through PRISM’s reward 

structure [4].  

The combination of simulation and model-checking are used collectively to investigate 

steady-state behavior along with transient properties of the modeled system to gain a 

more comprehensive understanding. Transient properties (i.e dependent on time) are of 

great interest to biologists because they can be compared with available experimental 

data and examined for correctness [4]. However, the PRISM framework cannot be used 

with models that that capture both discrete and continuous dynamics, which are often 

found in realistic, complicated biochemical systems [5]. 

A machine learning approach for generating temporal logic classifications of complex 

model behaviors presents a systems biology workflow that applies principal component 

analysis (PCA) prior to Density-Based Clustering (DBC) of time-series data generated by 

the simulation of Colored Petri Nets (CPN) [6]. Statements in probabilistic linear-time 

are generated automatically for each cluster to discriminate between clusters. DBC adjust 

well to varying cluster shape, but handles cluster density poorly. This is due to the use of 

a single density parameter that holds globally causing clusters to be missed if set too high 

and clusters merged if set too low [7].  

Monte Carlo simulations are performed on models of synapse configurations of varying 

structural and physiological characteristics to generate a time-series representation of the 

synapses’ behavior. Each synapse was run numerous times and the resulting simulation 

data was averaged and fit by Nonlinear Least Squares (NLS) to a variety of mathematical 



functions to determine their coefficients and ranking measurements corresponding to the 

fit of the function to the simulation results obtained [8].  

A linear regression model was applied to the considered functions to define a relationship 

between their coefficients and the modeled synapse parameters, but a linear correlation 

couldn’t be derived. Machine learning regression algorithms are used to learn the 

relationship between AMPA behavior series (as the training data) and the open AMPA 

percentage (as the target value).  

The predicted values from the machine learning methods where used in the final curve 

fitting stage through NLS to determine the coefficients of the candidate functions in the 

first step. The final prediction model of receptor activation was capable of predicting the 

“average percentage of open AMPA receptor for a given synapse configuration” [8].  

A prediction model can estimate the unseen behavior of synapses with different 

characteristics instead of requiring additional computationally expensive Monte Carlo 

simulations.  The reduction in computational costs (CPU hours) for the prediction model 

was 1/400
th

 that of Monte Carlo simulations. The limitation to this approach is the initial 

Monte Carlo simulations needed to produce the comprehensive dataset required for the 

final prediction model. In all 3,500 CPU hours were needed to produce more than ten 

million data points. The receptor prediction model depends greatly on the quality of the 

initial training data to be able to learn and extract useful synapse behavior patterns [8]. 

3 Data Representation and Preprocessing Techniques 

Dimensionality reduction techniques are crucial in ML to reduce the time and space 

complexity along with the required number of training examples needed to accurately 

produce a classifier or regressor [9].  However, care must be taken in the way the 

reduction is performed so essential information is not lost by the altered feature space. 

Additionally, for the suggestion generator to provide feedback based on tweaks to the 

users input the 5- dimensional input space must be maintained to access input parameters 

that are limiting the reaction.    

Clustering methods can intuitively be thought of as organizing a large number of “items” 

into a smaller number of groups to represent them in a more concise manner. Clustering 

methods divide the data set into individual groups of data points that are regarded as 

similar to each other by a distance or similarity measure.  Once the groups are comprised 

of the individual data points each cluster can be understood by its collective behavior 

providing a summary of the data points that represent each cluster [10]. The individual 

data points can be are assigned to their corresponding cluster number by an added feature 

column providing a new feature space that can be used by a classifier or regressor to 

further determine key properties defining each cluster.      

K-means is a representative-based algorithm that selects one partitioning representative 

as the centroid (mean point) of the cluster to assign the remaining data points to one of 

the k closest representative [7]. The main factor in finding a good clustering is the 

determination of good partitioning representatives [7].  



K-means requires a pre-defined number of clusters to be set and is often performed 

iteratively to find the appropriate number of clusters. Each k cluster then represents 

simulations of similar behavior that can be used to summarize descriptive qualities of the 

group. The locations of independent clusters can be used comparatively to find 

interesting behavior and transition properties from one cluster to another.   

Representative-based clustering methods are known to favor spherical shaped clusters 

while adjusting better to varying clustering density [7].  While agglomerative and 

density-based clustering methods adjust better to differing cluster shapes but perform 

poorly on varying density of the clusters [7].                

Feature extraction methods like Principal Component Analysis (PCA) are used as a 

preprocessing technique to simplify and describe the key factors in the data. However, 

unlike clustering methods that derive a new feature space in PCA the features are 

combined to form a lower dimensionality while preserving the greatest amount of 

information from the original dimensions [11].  

PCA has been used prior to clustering methods in the hopes of better representing each 

cluster while taking advantage of an additional leveling of description properties that 

clustering allows. PCA has been applied as a preprocessing stage before three clustering 

methods, namely the hierarchical average-link algorithm, the k-means algorithm, and the 

Cluster Affinity Search Technique (CAST) do not foster improved cluster quality and 

often low overall cluster quality [11].   

4 Biodiesel Model 

We present our updated model analysis approach designed to `crowdsource' simulations 

of a formal Stochastic Hybrid System (SHS) model of biodiesel production.  We use the 

SHS modeling paradigm because it is a flexible, efficient modeling paradigm that can 

capture discrete, continuous, and stochastic modeling components [1]. In this section, 

we present abbreviated details of the formal modeling and simulation approach and our 

model of biodiesel production. 

SHS have been used to model and analyze complex, interesting systems with discrete, 

continuous, and probabilistic dynamics.  SHS contain a set of discrete states, invariants 

associated with the discrete states, and continuous dynamics associated with the discrete 

states. Discrete transitions between the states occur either because the continuous state x 

satisfies the transition guard or based on an exponential firing rate (probabilistic 

transition).  A reset measure R is associated with any transition. We use an existing, 

validated model of biodiesel production presented in [1].   

The biodiesel chemical reactions involve six chemical species and six highly-coupled 

reactions [1].  Vegetable oil in its purest form is made up of triglycerides (TG); 

however, it breaks down into diglycerides (DG) and monoglycerides (MG) as it is 

heated.  An alcohol, methanol (M), is combined with the TGs, DGs, and MGs to convert 

them into biodiesel esters (E) and glycerine (GL).   

Since temperature significantly affects the rates at which reactions occur, it is important 

to use accurate models of the kinetic coefficients of the chemical reactions.  Our kinetic 



rate equations were derived using the Arrhenius equation and known dynamics of the 

reactions and were presented previously [1].  Since chemical dynamics are inherently 

stochastic, SDEs are an ideal modeling paradigm for the chemical concentrations.   

It is critical to determine whether or not a biodiesel processor will be able to produce 

high quality biodiesel, which will pass the American Society for Testing and Materials 

(ASTM) biofuels tests.  Studies have shown that only very small quantities of oil 

(TG+DG+MG) in the final biodiesel will allow the resulting fuel to meet ASTM 

specifications [1].  Challenges exist in designing biodiesel processors because different 

feed stocks have different concentrations of TGs, DGs, and MGs, and these 

concentrations have a direct impact on the catalyst used and the amount of M required 

to make high quality fuel.   

A score for the reaction can be calculated to provide further information about the 

reaction trajectory.  We use the fuel cost because the goal of the simulation game we 

have created is to minimize the fuel cost (while still producing quality fuel).  The fuel 

cost is calculated assuming the initial oil is free (as is the case with many waste oil 

reactors).   

The fuel cost takes into account the cost of methanol, catalyst, and the electricity to heat 

the tank.  All of these variables change depending on how the user configures their 

simulation.  The equation below shows the way we calculate the cost where T is the 

temperature, M is the amount of methanol, TG is the concentration of triglycerides, DG 

is the concentration of diglycerides, and MG is the concentration of monoglycerides.  

The initial oil quantity is translated into TG, DG, and MG by dividing the initial oil 

amount into the percentages of TG, DG, and MG found in canola oil.  Overall reaction 

time is also incorporated into the equation since the time affects the amount of energy 

(heat) used to create the fuel.   

𝑐𝑜𝑠𝑡 =
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5 Classification 

Classification seeks to determine the separation of different groups (classes) by 

determining the relationships of attributes (features) to the individual class. The outcome 

of the analysis technique can be described by a set of rules, which assign new unseen 

instances to their corresponding classes. These “rules” (discriminates) partition the 

variable space into localized regions that correspond to each class. The rules can then 

provide guidelines for determining interesting simulation input space.  

Decision trees are a classification algorithm that assumes no prior form of class densities 

(successful simulations or unsuccessful) or model parameters. Decision trees are 

discriminant–based techniques that aim to determine the boundaries that separate the 

classes [9].  

The tree structure consists of decision nodes and leaf nodes that are constructed by a 

number of recursive splits based on the provided training data. The splits in a 

classification tree are preformed to minimize an impurity measure. The decision nodes 



resulting from the recursive splits each define a discriminant function that regionalizes 

the input feature space. The leaf nodes correspond to a localized region that represents all 

simulations with the same class label that followed the recursive splits down the tree 

structure. With the classification tree the target class does not need a single description to 

which all instances follow, but has the capability to represent all localized regions.  

Traversing from the root to any combination of decision nodes further subdivides the 

input space into more localized regions by the combination of each nodes discriminate 

function. The combination of decision nodes can be interpreted as a “rule” that defines a 

particular class. In this regard the decision tree can be seen as various alternatives of user 

inputs. See Figure 1 for an example of a decision tree that can be used for classification 

of our model.   

 

Figure 1: Decision tree for our MLDM approach showing a potential regionalization of 

the simulation input space.  

Ensemble learning methods seek to construct a collection of base learners (classifiers), 

which are used collectively in a combination scheme to provide a more accurate classifier 

or regressor [12]. Boosting is an ensemble learning method, which trains base learners 

sequentially on the training error of the previous learner [12]. With each iteration, the 

base learning algorithm produces a weak prediction rule that the boosting algorithm 

combines by a weighted voting scheme to form a more robust prediction rule [12].  

Boosting can be applied to any classifier and in this work decision trees are the base 

learner considered. A decision tree is constructed on a portion of the training data. The 

classification error for this decision tree is given a higher weight for the next decision tree 

to try and create an accurate prediction rule to correctly classify the instance. Sequentially 

this processes builds trees on the hardest instances to label.  

 



6 Architecture 

The overall architecture of our MLDM system is shown in Figure 2. Users from the 

general public use our iPad or iPhone application to run biodiesel simulations as part of a 

game.  These simulations send the results to a central database that is used for the MLDM 

approach.  The MLDM results create recommendations that are fed back to the users to 

improve and encourage further simulations.  A web service is used to update and improve 

the MLDM approach.   

  

Figure 2: Depiction of the system architecture.   

This architecture allows for the combination of these simulations as Monte Carlo 

simulations to perform validation of the system.  Users are notified and presented with 

immediate results if they choose a simulation that is already in the database to reduce 

wasted computation.   

6.1 MLDM Approach 

We apply preprocessing techniques to the stored data in our database and once the data is 

in the right format, it is split into training data and a validation set.  Machine learning 

algorithms are then applied to the training data in order to obtain a model. The model is 

then validated using the validation set. The prediction model is then deployed so it can be 

accessed by crowd workers’ mobile applications.  Figure 3 depicts the architecture of the 

MLDM approach.   
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Figure 3: MLDM architecture 

6.2 Mobile Application 

The mobile application allows a user to play a game-like application that runs the 

scientific simulation.  The user is motivated to play the game to improve their score and 

contribute to the scientific computing goal of the app.  Screenshots of the application can 

be seen in Figure 4.   

 

Figure 4: Screenshots of the mobile application.   
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Users start by selecting the input variables and initial configuration for the simulation, 

and then they are presented with a car animation that shows the results of how much fuel 

is produced, what quality it is (percentage conversion), and what the cost of the fuel 

produced is.   

The goal of the game is to find various simulation inputs that influence the final 

conversion rate and overall cost of successful biodiesel conversions that meet American 

Society for Testing and Materials (ASTM) standards for quality biodiesel fuel mentioned 

previously.  

The application architecture allows for any amount of mobile users to simultaneously 

configure and run simulations. The simulation results are displayed to the user in the 

form of the ending chemical concentrations and the cost of the fuel made. The results 

are also stored on database and can be accessed through a companion website. More 

information about the companion website can be found in [1]. 

The knowledge gained from these methods is validated in two ways. First the approach is 

validated with the convention standards meet within the MLDM community (charts, 

graphs). Second, the knowledge gained is applied practically as a suggestion generator to 

provide the crowd workers a feedback response system to improve their biodiesel 

production scores by tweaking their inputs values that are limiting the successful 

conversion of biodiesel.   

7 Results 

The feature columns of the database are methanol, temperature, oil, mixing length, 

settling time, overall run time, final conversion rate, and the class label. Each simulation 

is recorded as an individual row in the database, collectively comprising the training data 

provided to the MLDM techniques. For classification, successful simulations with a 

conversion rate of 95% and higher are marked as 1 for the class label while unsuccessful 

simulation with a conversion rate below 95% are marked with 0. Normalization is applied 

to the data before applying k-means to avoid features from dominating one another; 

however, this normalization is not used with the two-class boosted decision tree. 

K-means clustering algorithm is applied in a semi-supervised mode by incorporating the 

target label to guide centroid selection. The drawbacks known to k-means are diminished 

when preformed in a semi-supervised mode, which has been demonstrated in [13]. For 

these reason k-means was determined as the most suitable clustering algorithm compared 

with the alternatives.  

Our data set formed seven clusters. These clusters where then analyzed (by hand) and 

profiled individually and then used comparatively to determine the transition properties 

between each cluster. Clusters 6 and 7 in figure 5 represent a grouping of successful 

simulations.  The percentage in the clusters represents the purity of the target class to the 

undesired class (successful to unsuccessful).   



 

Figure 5: Cluster representation for the biodiesel system. The relationships of the clusters, 

denoted in Figure X by colored lines, are determined by the transition properties of the 

variable being compared, in this case, methanol.  

7.1 Suggestion generator 

Nearly two thirds of the simulation trajectories in the database result in biodiesel that 

does not meet American Society for Testing and Materials (ASTM) standards. These 

simulations do not help obtain potential regions of preferred behavior. The suggestion 

generator compares the users’ input to the known clusters properties. If the input 

simulation values can be determined with a high level of confidence to a particular cluster 

that cluster is then used to compare transition qualities to other clusters with high 

conversion rates.  

The data point itself is also weighted to the individual clusters properties as to not rely on 

the cluster identification process solely. The scores from both the cluster identification 

and individual data point are weighted and the suggestion generator determines the least 

number of changes needed to be made to the simulation input to produce a successful 

biodiesel meeting ASTM standards.  

The suggestion generator is solely the end result of the more encompassing MLDM 

process, which has successful partition the simulation input-space into regions 

corresponding to successful simulations and non-successful simulations. This information 

is then produced to the crowd workers as previously described.  

7.2 Machine Learning Measures  

 
Different metrics are appropriate in different settings making the judgment of supervised 

learning algorithms dependent on the application [14]. The final performance measures 

we used are found in Table 1.  They are achieved by 10-fold cross-validation (CV). An 

additional CV was performed to provide a reliable estimate of the final classifier’s 

performance, which provided similar results.    



Table 1: Results for the MLDM performance measures 

 

Accuracy measures the proportion of true results to the total cases. Accuracy shouldn't be 

used alone to determine the efficiency of the classifier as it assumes constant and 

balanced class distribution for the data set [14]. Additionally, accuracy assumes "equal 

error costs" meaning a false positive is equivalent to a false negative [14]. To take class 

distribution and error cost out of the classification measure, rank metrics such as area 

under the ROC curve (ROC) are performed. This metric is considered as a summary of 

the model performance across all possible thresholds [14].  F-score takes both false 

positives and false negatives into account by the weighted average of precision and recall. 

Average Log Loss can be considered the penalty of a wrong result. Training log loss can 

be interpreted as the advantage the classifier has over randomly guessing.  

 

Survey data from the Australian central Great Barrier Reef was used to classify soft coral 

taxa [15]. A variety of categorical attributes were considered along with spatial and 

physical attributes for four particular species. Classification and Regression Trees were 

used to identify each species by their corresponding environmental characteristics. The 

misclassification rate was 9.1% with 34 out of 373 cases being misclassified, which is an 

accuracy rating of 90.9%.   

In [16] different decision tree classifiers where trained on medical data with the intent to 

diagnose various ailments.  The data sets contained varying numbers of attributes with 

both discrete and continuous features. An Iterative Dichotomiser 3, Classification And 

Regression Trees, and C4.5 classifier algorithms were used on Diabetes and Heart 

StatLog data. Comparative from the results obtained in this work, these measures 

performed poorly with relatively similar data set, ranging from an accuracy of 57% to 

78%. The difference in accuracy shows the flexibility and quality of our approach.  

8 Conclusions 

This work is an example to show how the integration of MLDM into formal methods can 

provide a way to analyze formal models of complex systems. In this work, our proposed 

MLDM technique is applied to the simulation results to improve crowd worker 

simulation quality.  While this is a trivial objective for the capabilities of this integration, 

it shows the flexibility of providing actionable feedback to users to based on 850 

simulation runs.  
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