
Comparison of (0,1)-Matrix-Vector Product
Difference-Based Algorithms

Jeffrey D. Witthuhn and Andrew A. Anda
Department of Computer Science and Information Technology

Saint Cloud State University
Saint Cloud, MN 56301
aanda@stcloudstate.edu

Abstract

 All elements of a (0,1)-matrix are from the set {0,1}. The (0,1)-matrix-vector product,
with the vector being over any algebraic ring, arises in many application areas. Although
there is no algorithm that can reduce the quadratic complexity of the general matrix-
vector product, we can exploit redundancies, if they exist, in the calculation of the (0,1)-
matrix-vector product to reduce the count of scalar operations. We describe and compare
our two redundancy-reducing algorithms. To reduce scalar operations in computing a
(0,1)-matrix-vector product, one of our algorithms uses a Gray code and the other
algorithm uses a minimum spanning tree. After implementing our two algorithms, we
compare the count of addition operations performed by both our algorithms against the
count required by the general (0,1)-matrix-vector product algorithm. We explore how the
counts of operations change as we vary matrix sizes, ratios of columns to rows, and the
sparsities of the matrices. We show that both our algorithms can reduce operation counts
compared to the general method. The operation reduction benefits increase as the
matrices become denser or become relatively taller. Based on our analyses, we find that
between our two algorithms, our minimum spanning tree algorithm requires fewer
operations in most cases. However, the Gray code algorithm often requires fewer
operations for relatively large matrices.

mailto:aanda@stcloudstate.edu

1. Introduction

A (0,1)-matrix is an 𝑚𝑚 × 𝑛𝑛 matrix where each element 𝑎𝑎𝑖𝑖𝑖𝑖 is from the set {0,1}.
(0,1)-matrices arise from problems in a variety of application areas such as graph theory
[4], information retrieval [5], and matrix calculus [6]. The general matrix-vector product
operation, 𝑨𝑨𝑨𝑨 = 𝒚𝒚, represents the product of a matrix 𝑨𝑨 ∈ ℝ𝑚𝑚×𝑛𝑛, by the vector, 𝑥𝑥 ∈ ℝ𝑛𝑛,
to yield the vector, 𝒚𝒚 ∈ ℝ𝑛𝑛. More generally, the vectors may be over any Abelian group.
If A is a (0,1)-matrix, the ith element in the resultant vector, 𝒚𝒚, can be computed by the
sum of the elements in the operand vector, 𝑨𝑨, corresponding to the non-zero elements in
the ith row of A.

Consider the general product of two matrices which has cubic operational complexity.
For this operation there exist known algorithms of lower complexity, for example
Strassen’s algorithm which has the less-than-cubic complexity of 𝑂𝑂(𝑛𝑛𝑙𝑙𝑙𝑙7). For the
general matrix-vector product algorithm however, which has quadratic complexity, there
is no known similar general complexity-reducing algorithm, however there are specific
classes of low-rank structured matrices where the complexity may be reduced below
quadratic to log-linear.

In our previous publications, we describe three original algorithms for applying what we
term the differencing method which relies an observation that elements in the result
vector of the (0,1)-matrix-vector product can be computed using values of previously
computed elements. [1, 2, 3, 7] Here we restrict our investigations to two of our three
algorithms: the Gray code-based algorithm and the MST-based algorithm. We compare,
and discuss these two of our algorithms. The differencing method relies our observation
that elements in the result vector can be computed using values of previously computed
elements. Specifically the count of differing bits, the Hamming distance, between the two
rows of the (0,1)-matrix corresponding to the element that is being computed and the
previously computed element is the minimum count of operations that will be required to
compute the new element.

For our first algorithm, which is data oblivious, we generate an n-bit circular Gray Code
which is a circular ordering of all 2n binary strings in which every adjacent bit string has a
Hamming distance of 1. We then make use of the Gray Code properties and the
differencing method to calculate all of the 2n possible elements of the resultant vector in
2n steps.

In our second algorithm, which is data sensitive, we generate a complete graph where
each row of the (0,1)-matrix represents the vertices and the Hamming distance between
each row represents the weights of each edge of a complete graph. Generating a
minimum spanning tree on this complete graph represents an efficient way to apply the
differencing method to any given (0,1)-matrix.

We will discuss the differencing method and our two algorithms that make use of it. We
will then discuss our implementations of these algorithms which count the number of

1

addition and subtraction operations required to compute the product. We then test these
algorithms and observe how the count of operations changes when we vary the size,
sparsity, and the columns-to-rows ratio of the matrix. We conclude by discussing the
implications of our results.

2. The Differencing Method[1]

Consider the general matrix-vector product 𝑨𝑨𝑨𝑨 = 𝒚𝒚,𝑨𝑨 ∈ ℝ𝑚𝑚×𝑛𝑛,𝑨𝑨 ∈ ℝ𝑛𝑛,𝒚𝒚 ∈ ℝ𝑚𝑚. This
can be computed by a doubly nested loop represented by the following equation:

𝑦𝑦𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,

 where 𝛼𝛼𝑖𝑖𝑖𝑖 is the element in the 𝑖𝑖𝑖𝑖ℎ row and 𝑗𝑗𝑖𝑖ℎ column of 𝐴𝐴.
For a {0,1}-matrix this calculation with ∀𝑖𝑖, 𝑗𝑗, 𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1} instead of multiplication we
compute a sum where if 𝛼𝛼𝑖𝑖𝑖𝑖 = 1 then the product 𝛼𝛼𝑖𝑖𝑖𝑖𝑨𝑨𝑖𝑖 contributes to the sum as 𝑨𝑨𝑖𝑖 and
in the case of 𝛼𝛼𝑖𝑖𝑖𝑖 = 0 the element is skipped. This operation results in at most 𝑚𝑚 × 𝑛𝑛
additions which occurs when each 𝛼𝛼𝑖𝑖𝑖𝑖 = 1.

Next, consider taking the difference between two elements of 𝒚𝒚,𝒚𝒚 𝑖𝑖 and 𝒚𝒚 𝑘𝑘:

𝑦𝑦 𝑖𝑖 − 𝑦𝑦 𝑘𝑘 = �𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− �𝛼𝛼𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= �(𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 − 𝛼𝛼𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

) = �𝑥𝑥𝑖𝑖(𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

)

Now consider computing 𝒚𝒚 𝑖𝑖 given that 𝒚𝒚 𝑘𝑘 has already been computed:

𝑦𝑦 𝑖𝑖 = 𝑦𝑦 𝑘𝑘 + �𝑥𝑥𝑖𝑖(𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

) = 𝑦𝑦 𝑘𝑘 + �𝑥𝑥𝑖𝑖(𝑑𝑑𝑖𝑖

𝑛𝑛

𝑖𝑖=1

), 𝑑𝑑𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑘𝑘𝑖𝑖

This implies that aside from the first element of y to be computed, each subsequent
element,𝒚𝒚 𝑖𝑖, can be computed as the sum of a previously computed element, 𝒚𝒚 𝑘𝑘, with the
inner product of x with the difference vector of the ith and kth rows, d. Let 𝑨𝑨𝑖𝑖be the ith
row of 𝑨𝑨. And let ‖𝑨𝑨𝑖𝑖‖1 be the count of 1’s in 𝑨𝑨𝑖𝑖 and ‖𝒅𝒅‖1 be the count of 1’s in d. Then
‖𝑨𝑨𝑖𝑖‖1 − ‖𝒅𝒅‖1 − 1 equals the count of operations saved in the computation of 𝒚𝒚𝑖𝑖. ‖𝒅𝒅‖1 is
also the Hamming distance between the two rows of 𝑨𝑨. So operations can be saved
reusing previously computed results and adding or subtracting the elements in x where
the two rows differ. In our two algorithms we fully exploit this observation.

2

For example, consider the following triangular (0,1)-matrix-vector product:

In this example we halved the count of operations required from 𝑛𝑛(𝑛𝑛−1)
2

 to (𝑛𝑛 − 1) by the
applying our differencing method.

Several notes:

• Duplicate rows can be computed using zero additional operations by loading the
previously computed element.

• The minimum possible count of operations to calculate any given element is given
by the minimum Hamming distance between two rows in the (0, 1)-matrix.

• The optimal case with no duplicate rows would be where every row has a
Hamming distance from its two adjacent rows of exactly one.

3. Our Gray Code Algorithm[1]

As noted above, the optimum case to exploit the differencing method would be the case
in which rows have a Hamming distance of exactly one between them. This is the exactly
the case in a Gray Code. A Gray Code is an arrangement of bit strings in which every
adjacent bit strings has a Hamming distance of at most one. A circular n-bit Gray Code is
a sequence of 2n bit strings of length n in which every adjacent bit string has Hamming
distance of one, with the first and the last bit strings also having a Hamming distance of
one.

This algorithm is based on our observation that for some general (0,1)-matrix-product,
𝑨𝑨𝑨𝑨 = 𝒚𝒚, 𝑨𝑨 ∈ {0,1}𝑚𝑚×𝑛𝑛,𝑨𝑨 ∈ ℝ𝑛𝑛,𝒚𝒚 ∈ ℝ𝑚𝑚, we can generate a n-bit Gray Code which,
since it represents all n-bit binary strings, will contain each row of 𝑨𝑨 exactly once. Then
we can use our differencing method to compute the inner product between each row of
the Gray Code and the x vector to generate a temporary vector in 2n steps. Subsequently,
only m lookups and retrievals are required, one for each row in 𝑨𝑨, to compute the
resultant vector y.

3

Our Gray code algorithm is:

• Input: A, n, m, x
• Generate an n-bit Gray Code
• Array y’ [2n]
• Array y [m]
• For 𝑖𝑖 ← 1 𝑖𝑖𝑡𝑡 𝑖𝑖 ← 2𝑛𝑛

o Calculate the inner product of row i in the Gray Code and x and store into
y’[i]

• For i ← 1 𝑖𝑖𝑡𝑡 i ← m
o Search row 𝐀𝐀i in the Gray Code, and store the corresponding element in

y’ in y[i]
• Return y

This algorithm, in terms of space requirements, grows exponentially with n since there is
2𝑛𝑛 rows in the Gray Code. So, we extend the algorithm to partition the (0,1)-matrix
into 𝑛𝑛

𝑘𝑘
, k-bit partitions. That is, we choose a partition size, k, and then generate a k-bit

Gray code which will then be used to compute 𝑛𝑛
𝑘𝑘
 sub-products which will add together to

compute y. This algorithm’s space requirement grows linearly with n since here is 𝑛𝑛
𝑘𝑘

scratch y’s of length 2𝑘𝑘.

4. Our Minimum Spanning Tree Algorithm. [7]
The Hamming distance between any two binary vectors is the minimum count of
operations required to compute a corresponding result vector element if the other element
has been previously computed. This leads to the problem of finding the order in which to
calculate each element and from what elements they should be calculated from that yields
the leads count of additions. To solve this problem we use graphs.

Given a (0,1)-matrix, 𝑨𝑨 ∈ {0,1}𝑚𝑚×𝑛𝑛, we generate a complete graph Km with 𝑚𝑚(𝑚𝑚−1)
2

edges where each row 𝑨𝑨𝑖𝑖of 𝑨𝑨 is represented by a vertex in Km , and each edge on the
graph has weight equal to the Hamming distance between the two rows that it connects.
Next we compute the minimum spanning tree of Km choosing some vertex as the root. A
traversal of this graph will represent computing the (0,1)-matrix-vector product where
visiting each vertex consists of calculating the corresponding element using the
difference between the parent of the current row. This will yield the fewest additions.
(See Figure 4.1)

4

More precisely, the algorithm is as follows:

• Input: A, n, m, x
• Generate a complete graph, K, from A
• Compute the minimum spanning tree, T, of K
• Array y[m]
• Decide on value to be the root of the tree, r
• Calculate value in y corresponding to r
• Perform a breadth first traversal of T starting with r where visiting each vertex

consists of computing the value of the corresponding element in y using the value
corresponding to its parent vertex

• Return y

As with the Gray Code algorithm, we can extend this algorithm by vertically partitioning
the (0,1)-matrix into partitions of size k and then calculating 𝑛𝑛

𝑘𝑘
 sub-products using this

method. One advantage of this method is that we create 𝑛𝑛
𝑘𝑘
 separate minimum spanning

trees in an attempt to further reduce the total count of operations required. Another
advantage is that we reduce the number of degrees of freedom between each vertex from
n-bits to k-bits and hence the maximum Hamming distance between two vertices is
reduced.

5

5. Implementations[8]
Our algorithms were implemented in C++ and the BOOST C++ libraries. The purpose of
our implementations is to determine the count of addition and subtraction operations
required by our algorithms. If these algorithms were to be considered in applications, our
implementations would need much more refactoring to improve their run-time and space
efficiency.

5.1. Representation

(0,1)-matrices are represented by the Bitmatrix class which stores the bits of a
(0,1)-matrix, 𝑨𝑨 ∈ {0,1}𝑚𝑚×𝑛𝑛 in a std::vector containing m
boost::dynamic_bitset<>s of length n. Vectors 𝑨𝑨 ∈ ℝ𝑛𝑛 are represented by
a 𝑛𝑛 × 1 matrix in the class Doublematrix, which stores each element as type double
in a vector of n vectors of length 1. These classes contain all of the operations we
use to explore these algorithms.

5.2. Gray Code Algorithm

The Gray Code algorithm with the partition extension is implemented as a method in
Bitmatrix. There are many binary Gray codes but we choose to use the reflected binary
Gray code. This Gray code is very convenient to implement because the ith row of the n-
bit reflected binary Gray code can be calculated by the following equation:

𝑮𝑮𝑖𝑖 ← 𝑖𝑖 ⊕ (𝑖𝑖 ≫ 1) [9]
Likewise, given Gi we can find i:

 𝑖𝑖 ←
𝑛𝑛 − 1
⊕

𝑘𝑘 = 0
𝑮𝑮𝑖𝑖 ≫ 𝑘𝑘 [9]

So we have a very nice mapping to and from the integers and the Gray code. So, let the
partition size be p, we first generate a p-bit Gray Code in this way (represented in the
same way as (0,1)-matrices). Then we compute the 𝑛𝑛

𝑝𝑝
 scratch y’s. Finally, we compute

and assemble the output vector.

6

http://www.boost.org/

5.3. MST Algorithm

To represent the graph of the (0,1)-matrix, we use an adjacency list which is constructed
using another vector of m vectors of integers. This representation allows us to quickly
access the list of adjacent vertices indexed from zero to m. So in the implementation we
split the (0,1)-matrix into partitions of size k and for each partition utilize the
BOOST 1.59 implementation of Prim’s MST algorithm to calculate the MST of each
individual partition. Then for each partition we convert the output of that algorithm into
the adjacency list representation described earlier and utilize it for a breadth first
traversal. For the breadth first traversal, we make extensive use of C++ vectors to
calculate each sub-product. Finally all sub-products are merged together and the final
result vector is returned.

5.4. Counting operations

We count the number of additions and subtractions required by our algorithm in
calculating each element in the sub-products as well as combining all of the sub-products
into the final result vector.

6. Testing the Algorithms
In testing these algorithms, we vary the count of elements in the matrix, the ratio of
columns to rows, as well as the sparsity of the matrix and we observe how the count of
operations change. To do this, we define a set of tests that will work under the constraints
of the implementation. Each test will compare the count of operations required by the
general (0,1)-matrix-vector product algorithm with the operations required by our MST
algorithm and our Gray Code algorithm.

6.1. Count of Elements

We want to vary the count of elements in the matrix while keeping constant the ratio of
columns to rows and the sparsity. To do this, we use square matrices with a sparsity of
50% with partitions of size 8. The number of columns are set to be powers of two from
the set {8, 16, 32, 64, 128, 256, 512}.

7

6.2. Columns-to-Rows Ratio

When varying the columns-to-rows ratio, we need to maintain the total count of elements
and the sparsity. Here, we use two sets of data with two different sizes of matrices. For
the first test set, we use matrices of size 512 × 512 = 262,144 elements in the
(0,1)-matrix and 50% sparsity. The ratios we test, 𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑛𝑛𝑐𝑐

𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐
, are from the set:

{0.25, 1, 4, 16, 64, 256, 1024, 4096}.
In the other data set, we use matrices of size 128 × 128 = 16,384 elements in the
(0,1)-matrix and 50% sparsity. The ratios we test, 𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑛𝑛𝑐𝑐

𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐
, are from the set:

{0.0039063, 0.015625, 0.0625, 0.25, 1, 4, 16, 64, 256}.
These two data sets are used to further illustrate how the required count of operations
changes as the matrices become relatively wider.

6.3. Sparsity
We test how square (0,1)-matrices of dimension 512 × 512 results vary as the count
of 1’s changes from 0% to 100%.

7. Results
Using the set of tests described above, we now discuss the generated data (displayed
using tables and graphs).

7.1. Count of Elements
Figure 7.1.1 and Table 7.1.1 show the data generated by our tests. From these, we
observe that as the count of elements increases, the operation counts of all three
algorithms appear to grow near linearly. For very large matrices, our Gray code algorithm
appears to require fewer operations than both the general algorithm and our MST
algorithm. For all sizes, our MST algorithm case requires fewer operations than the
general algorithm case.

8

Figure 7.1.1: Plot of the number of operations required for each algorithm vs the number

of elements in the square (0,1) matrix.

Size Regular MST GrayCode
64 30 26 263

256 136 86 542
1024 527 314 1147
4096 2097 1031 2549

16384 8264 3668 6118
65536 32682 13383 16317

262144 131032 46737 48957

Table 7.1.1: Table format for the data in Figure 7.1.1.

7.2. Columns-to-Rows Ratio

7.2.1. 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟓𝟓𝟓𝟓𝟓𝟓 × 𝟓𝟓𝟓𝟓𝟓𝟓

Figure 7.2.1.1 and Table 7.2.1.1 show the data generated by this test. For both of our
algorithms, the benefits decrease as the matrices become relatively wider. In our MST
algorithm case, the count of operations approaches the count of operations required for
the general algorithm case. In our Gray code algorithm case, the count of operations
becomes greater than that of the general algorithm case sometime after the ratio
exceeds 16:1.

16

64

256

1024

4096

16384

65536

64 256 1024 4096 16384 65536 262144

O
PE

RA
TI

O
N

S

NUMBER OF ELEMENTS

Number of Elements
Regular MST GrayCode

9

Figure 7.2.1.1: Plot of the number of operations required for each algorithm vs the
rows/columns ratio of the (0,1) matrix with 512×512 elements.

columns/rows Regular MST GrayCode

0.25 130469 40629 40792
1 131242 46719 48956
4 131030 53295 65262
16 131268 58796 97907
64 131143 67339 163193
256 131132 80171 293749
1024 130925 93734 554878
4096 130981 110132 1077112

Table 7.2.1.1: Table format for the data in Figure 7.2.1.1

7.2.2. 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟓𝟓𝟓𝟓𝟏𝟏 × 𝟓𝟓𝟓𝟓𝟏𝟏

Figure 7.2.2.1 and Table 7.2.2.1 show the data generated by this test. For both of our
algorithms, the benefits decrease as the matrices become wider. In our MST algorithm
case, the count of operations approaches the count of operations required for the general
algorithm case. In our Gray code case, the count of operations becomes greater than the
general algorithm case sometime after the ratio exceeds 1:1.

16384

65536

262144

1048576

0.25 1 4 16 64 256 1024 4096

O
PE

RA
TI

O
N

S

COLUMNS/ROWS

Columns:Rows size 512×512
Regular MST GrayCode

10

Figure 7.2.2.1: Plot of the number of operations required for each algorithm vs the
rows/columns ratio of the (0,1) matrix with 512×512 elements.

columns/rows Regular MST GrayCode

0.003906 8154 2299 2299
0.015625 8233 2542 2552

0.0625 8296 2917 3059
0.25 8208 3338 4079

1 8269 3700 6123
4 8145 4240 10196

16 8150 5036 18359
64 8226 5893 34686

256 8167 6883 67315

Table 7.2.2.1: Table format for the data in Figure 7.2.2.1

7.3. Sparsity

Figure 7.3.1 and Table 7.3.1 illustrate the data generated by these tests. For very sparse
matrices, there are no benefits to the using our algorithms. But after there are at least 20%
1’s in the matrices, both algorithms require increasingly fewer operations than the general
method. Our MST algorithm’s count of operations appears to be bounded above by the
count of operations required by the Gray code algorithm. And the Gray code algorithm’s
performance appears to approach a constant.

1024

4096

16384

65536

0.0039063 0.015625 0.0625 0.25 1 4 16 64 256

O
PE

RA
TI

O
N

S

COLUMNS/ROWS

COLUMNS:ROWS size 128×128
Regular MST GrayCode

11

Figure 7.3.1: Plot of the number of operations required for each algorithm vs the number
of elements in the square (0,1) matrix.
% of
1's Regular MST GrayCode
0 0 0 16320
5 13016 12739 27278
10 25951 21691 34742
15 39194 28586 39974
20 51487 33405 43301
25 65341 37659 45687
30 78220 40696 47123
35 90703 43001 47918
40 103665 44836 48449
45 116959 46146 48760
50 129615 46737 48930
55 142639 46549 49031
60 155658 45742 49058
65 168850 44528 49079
70 182027 42999 49085
75 194479 41537 49085
80 207776 39765 49088
85 220703 38136 49088
90 233737 36569 49088
95 246514 35223 49088
100 259481 33766 49088

10000

100000

1000000

0 20 40 60 80 100

O
PE

RA
TI

O
N

S

% OF 1'S IN (0,1) MATRIX

Sparsity
Regular MST GrayCode

12

8. Future Research

• Implement and generate data from the remaining one of our algorithms, excluded

from this study, that also uses the differencing method to compute the
(0,1)-matrix-vector product via compression by induction on hierarchical
grammars. [2]

• Implement in our algorithms optimal lengths of partitions for our given
(0,1)-matrix to further reduce operation counts. [1]

• Perform further code optimization to improve run time in comparison to the
general algorithm.

• Refactor the minimum-spanning-tree algorithm implementation to use the linear-
complexity counting sort, as our problem generates graph edge weights as
integers in the range from 1 to |V|. This will allow the sorting component of
Kruskal’s algorithm to be performed with linear complexity making the dominant
time factor the time to process the edges. [10]

• Investigate and implement a hybrid algorithm that uses the most efficient
algorithm based on the measured characteristics and properties of the
(0,1)-matrix.

• Investigate how much of the computation for these algorithms can be performed
at compile time using C++ templates.

• Generalize this method to non-(0,1)-matrices by converting any arbitrary matrix
to a linear combination of (0,1)-matrices. [1]

9. Conclusion
We discussed, implemented, and tested two algorithms that compute the (0,1)-matrix-
vector product which exploit our differencing method. Our tests measure the count of
addition operations required for each implementation and also the count of addition
operations required by the general algorithm. Both of our methods require fewer
operations than the general method in these certain cases: when the (0,1)-matrices
that have more rows than columns, when the matrices are taller, for relatively large
matrices, and when the matrices are more dense. In general, our data show that our
MST algorithm appears to require fewer operations than our Gray code algorithm.
However for very large matrices (larger than we have tested) we can estimate from
our data that our Gray algorithm will require fewer operations than our MST
algorithm.

13

10. References

[1] Andrew A. Anda . A Gray Code Mediated Data-Oblivious (0, 1)-Matrix-Vector
Product Algorithm. Conference: Proceedings of the 2005 International Conference on
Scientific Computing, CSC 2005, Las Vegas, Nevada, USA, June 20-23, 2005

[2] Aaron Webb and Andrew A. Anda. (0, 1)-Matrix-Vector Products via Compression
by Induction of Hierarchical Grammars. In Proceedings of the 38th Midwest Instruction
and Computing Symposium (MICS), University of Wisconsin, Eau Claire, 2005.

[3] Andrew A. Anda. A Bound on Matrix- count Vector Products for (0, 1)-Matrices via
Gray Codes. In Proceedings of the 37th Midwest Instruction and Computing Symposium
(MICS), University of Minnesota, Morris, 2004.

[4] Kenneth H. Rosen, John G. Michaels, Jonathan L. Gross, Jerrold W. Grossman, and
Douglas R. Shier, editors. Handbook of Discrete and Combinatorial Mathematics. CRC,
Boca Raton FL, 2000.

[5] Sándor Dominich. Mathematical Foundations of Information Retrieval. Kluwer,
Dordrecht, The Netherlands, 2001.

[6] Darrell A. TURKINGTON. Matrix Calculus and Zero-One Matrices. Cambridge
University Press, New York, 2002. Statistical and econometric applications.

[7] Jeffrey D. Witthuhn and Andrew A. Anda. (0, 1)-Matrix-Vector Product
Computations via Minimum Spanning Trees, In Proceedings of the 48th Midwest
Instruction and Computing Symposium (MICS), University of North Dakota, Grand
Forks, ND, 2015.

[8] Jeffrey D. Witthuhn, Implementation and code and testing details:
https://github.com/jeffwitthuhn/MICS-2016

[9] Henry S. Warren. Hacker's Delight (2nd ed.). Addison-Wesley Professional, Boston,
MA, 2012.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (3rd ed.). The MIT Press, 2009.

14

https://github.com/jeffwitthuhn/MICS-2016

