
0/1-Knapsack vs. Subset Sum:
A Comparison using AlgoLab

Thomas E. O’Neil
Computer Science Department

University of North Dakota
Grand Forks, ND 58202

oneil@cs.und.edu

Abstract
0/1-Knapsack and Subset Sum are two closely related, well-known NP-complete problems.
There is a direct reduction from Subset Sum to Knapsack, and the methods for solving
Knapsack are generally the same as for Subset Sum. So Subset Sum is a special case of
Knapsack. Does this suggest that Knapsack is easier or harder than Subset Sum? A review
of the literature shows that both problems have the same complexity when the complexity
parameter is n, but that Knapsack appears to be easier when the complexity parameter is
x, the total bit length of the input. This leads to an empirical study of the two problems to
determine whether the problem spaces have the same characteristics and whether various
algorithmic strategies exhibit the same relative performance.

The empirical study is conducted using AlgoLab, a software package written in Java that al-
lows rapid comparison of algorithms for batches of randomly generated problem instances.
The need to implement the Knapsack problem in AlgoLab led to a significant generaliza-
tion of its capability. Earlier versions of the software allowed at most two parameters to
drive the random instance generator at at most one constraint on the problem solution. This
is adequate for Subset Sum, since set size and maximum value are sufficient parameters to
generate random instances, and the target sum is the only constraint on the solution. With
Knapsack, however, we must specify the number of objects, the maximum weight of any
object, and the maximum value of any object for the instance generator. Also, the solution
has two constraints, a knapsack capacity and a minimum value goal. The new version of
AlgoLab allows any number of parameters to define a problem instance and any number
of constraints to characterize the desired solution. This enables experimentation to show
that when the value of an object is independent of its size, Knapsack instances are much
easier to solve, and the problem space does not show any of Subset Sum’s sensitivity to the
density of the input set.



1 Introduction
0/1-Knapsack and Subset Sum are two closely related, well-known NP-complete problems.
Subset Sum problem can be defined as follows: given a set of positive integers S and an
integer t, determine whether there is a set S ′ such that S ′ ⊆ S and the sum of integers
in S ′ is t. The 0/1-Knapsack problem is more general: given a set S of n objects with
weights w[1..n] and values v[1..n], a knapsack capacity C, and minimum value goal V ,
find a subset of objects whose weight is at most C and whose value is at least V . There is
a direct reduction from Subset Sum to Knapsack, and the methods for solving Knapsack
are generally the same as for Subset Sum. To reduce Subset Sum to Knapsack, we set the
values of all objects to be equal to their weights and set the knapsack capacity to be the
same as the minimum value goal. So Subset Sum is a special case of Knapsack. Does this
suggest that Knapsack is easier or harder than Subset Sum?

A review of the literature shows that both problems have the same complexity when the
complexity parameter is n, but that Knapsack appears to be easier when the complexity
parameter is x, the total bit length of the input. The analysis using n dates back to the
1970s, when Horowitz and Sahni [2] defined a splitting algorithm for both problems with
time complexity O(lg m · 2n/2), where m is the largest number in the input set. This com-
plexity has apparently not improved over the decades [11]. The analysis using x dates back
to the 1990s, when Stearns and Hunt [10] defined a hybrid splitting algorithm for the Par-
tition problem (a special case of Subset Sum) with complexity 2O(

√
x). This complexity is

duplicated by the DDP algorithm for Subset Sum [8] and Knapsack [6]. Most recently, it
has been shown that when DDP is applied to the Knapsack problem, the operation count
depends on the bit length of the set of weights or the set of values, whichever is shorter, and
the resulting complexity is 2O(

√
x/2)[9]. This provides analytical evidence that Knapsack

is generally an easier problem than Subset Sum, and we would expect empirical studies
to show similar results. Martello, Pisinger, and Toth describe such results [3, page 414]:
“Instances where a loose correlation, or no correlation at all, exists among the profit and
weight of each item ... can be easily solved to optimality even for large values of n, while
strongly correlated instances, as well as instances involving very large profit and weight
values, may be very difficult.” This provides motivation for the current study, which uses
the AlgoLab software to illustrate the empirical differences between the Subset Sum and
0/1-Knapsack problems. A study of Subset Sum using AlgoLab was published a few years
ago [7]. Here we provide an extension of that study to 0/1-Knapsack.

AlgoLab is a software package written in Java that allows rapid comparison of algorithms
for batches of randomly generated problem instances. Earlier versions of the software
allowed at most two parameters to drive the random instance generator and at most one
constraint on the problem solution. This was adequate for Subset Sum, since set size n
and maximum value m are sufficient parameters for the random instance generator, and the
target sum t is the only constraint on the solution. With Knapsack, however, the problem in-
stance contains two arrays of numbers, each with a distinct maximum, and two constraints
on the solution: a knapsack capacity and a minimum value goal. AlgoLab was extended to

1



allow any number of parameters for the instance generator and any number of constraints
on the solution. The changes to AlgoLab are discussed in more detail in Section 2 below,
and the results of the experiments on the Knapsack problem are described in Section 3.

2 Modifications to AlgoLab

The AlgoLab software package automatically runs and charts experiments on batches of
randomly generated problem instances as defined by user-specified parameters and con-
straints. The software was intended to be usable for any decision or optimization problem.
For each problem to be studied, the user supplies the code for a random instance genera-
tor and some number of algorithms to be compared. The original release ([5] allows the
user to specify two parameters to control the instance generator and one constraint on the
problem solution. This is adequate for many problems including k-Sat, graph problems
such as k-Clique, and Subset Sum. For k-Sat, the instance generator produces a Boolean
expression with m clauses over n variables and there is no constraint on the solution. For
k-Clique, a random graph is specified using a vertex count n and an edge count e, and the
constraint on the solution is the clique size k. For Subset Sum, the input is an array of n
integers with maximum value m, and the constraint on the solution is the target sum t. For
problems like Bin Packing and Knapsack, however, more parameters and/or constraints are
required. A Bin Packing instance requires two constraints on the solution: a bin capacity
and the number of bins. For a Knapsack instance, three parameters are needed to specify
the input set: a number of objects n, a maximum weight object WMAX, and a maximum
object value VMAX; and there are two constraints on the solution: a knapsack capacity C
and a minimum value goal V .

To extend the usability of AlgoLab, the MakeInstance method of the InstanceGenerator
interface was redefined to take a seed and an arbitrarily long array of parameters. Also, the
DecisionAlgorithm and OptimizationAlgorithm classes were redefined to have a setCon-
straint method that accepts both a constraint index and a constraint value. The index is
used to indicate which constraint to set, thus allowing the algorithm to maintain an arbi-
trarily long array of constraints on the problem solution. The user specifies the parameters
and constraints by adding lines to the AlgoLab.prj configuration file.

The modified AlgoLab user interface is illustrated in Figure 2. The upper left input box
labeled “X-Axis Value” allows the user to choose one of the parameters or constraints to
be variable, defining the data points along the x-axis of the chart panel. The other param-
eters and constraints are displayed in two tabbed panes. Each parameter or constraint can
be defined to be a fixed constant or a value computed as a function of the x-axis parame-
ter/constraint. The contents of the AlgoLab.prj file for the Knapsack problem are shown in
Figure 1.

2



project "The Knapsack Problem"
generator SVListGenerator
parameter N "Number of Objects"
parameter WMAX "Maximum Weight"
parameter VMAX "Maximum Value"
constraint C "Knapsack Capacity"
constraint V "Value Goal"
algorithm KBT
algorithm HSK
algorithm KDDP

Figure 1: An AlgoLab configuration file for the 0/1-Knapsack Problem

3 Knapsack Experiments
Many combinatorial problems have critical regions in the problem space where the prob-
ability of finding a solution changes rapidly from 0 to 1, with a crossover point at 0.5. A
previously published AlgoLab study of the Subset Sum problem illustrates critical regions
related to both the density of the input set [7, Figures 4 and 5] and the value of the con-
straint [7, Figure 6]. The density-related crossover point matches the mathematical models
in the research literature [4, 1], which predict crossover at n ≈ lg m. The constraint-related
crossover point, where the target sum is half the sum of the input set, provides evidence
that the Partition problem is the most difficult special case of Subset Sum. Since Subset
Sum is a special case of 0/1-Knapsack, The experiments described below were designed
to determine whether Knapsack shows the same critical regions as Subset Sum. All the
experiments use three algorithms: a bounded backtracking algorithm called KBT, an im-
plementation of the splitting algorithm from [2] called HSK, and an adaptation of the DDP
algorithm from [8] called KDDP.

Experiment 1 illustrates the Subset Sum problem as a special case of Knapsack. The set
size N ranges from 1 to 30, the maximum object weight is fixed at 100000, and both the
capacity and the value goal are set to N ∗ (100000/4), which is half the expected sum of
the set. The code for the instance generator assigns the value of each object to be equal
to its weight, so that the experiment represents the reduction of Subset Sum instances to
Knapsack instances. The step counts are shown on a log scale in Figure 2 and the decision
results in Figure 3. The results match Figure 4 of [7], showing a density-induced critical
region with a crossover point at about n = 18. The backtracking algorithm KBT shows a
step-count peak at the crossover point, and as the density continues to increase, the KBT
step counts continue to fall. The splitting algorithm HSK shows the best performance over
the entire range of instances.

Experiment 2 is identical to Experiment 1, except that the instance generator is modified
to make the random weight of each object completely independent of its random value.
The step counts are shown on a log scale in Figure 4 and the decision results in Figure 5.

3



Figure 2: Step counts for equal weights and values with increasing density.

Figure 3: Decision results for equal weights and values with increasing density.

4



Figure 4: Step counts for independent weights and values with increasing density.

Figure 5: Decision results for independent weights and values with increasing density.

5



Figure 6: Step counts for a constraint-based crossover experiment.

The results show that the critical region is gone. The probability of finding a solution is
near 1 over the entire range of instances. We also observe that the step counts are gener-
ally 10 times lower than in Experiment 1, and the ranking of the algorithms has changed.
Backtracking shows the worst performance with no indication of lower step counts as the
density grows, and KDDP outperforms both KBT and HSK over the entire range. When
weights and values of objects are independent, it appears that density does not affect the
probability of finding a solution.

Experiment 3 is designed to test for a constraint-based critical region. What constraint val-
ues will make the problem harder to solve? To answer this question, we fix N at 30 and set
WMAX = VMAX = 500. This makes the expected sum of all weights to be 30·500/2 = 7500.
We then vary the knapsack capacity C from 250 to 7500 while simultaneously varying the
value goal V from 7250 to 0. The step counts are shown on a log scale in Figure 6 and
the decision results in Figure 7. The decision results show a narrow critical region with
crossover at about C = 2500, where the value of V would be 5000. Combining this in-
formation with data from another experiment that has C fixed at 2500 and V varying from
250 to 7500, we speculate that there is a 50% chance of finding a solution when have
V/vsum − C/wsum ≈ .33, where vsum is the sum of all values and wsum is the sum
of all weights. This relation becomes the justification for setting the default constraints at
C = .33 · wsum and V = .66 · vsum for the subsequent experiments. Regarding the step
counts, we see that KBT and KDDP have peaks at the crossover point. KBT shows the
worst performance, and KDDP shows the best.

6



Figure 7: Decision results for a constraint-based crossover experiment.

The final experiment is intended to compare the performance of the three algorithms on
problems that increase in size while remaining in the critical region. To achieve this re-
quirement, we vary N from 10 to 40, set WMAX = VMAX = 100,000, and let the constraints
assume their default values. The step counts are shown on a log scale in Figure 8 and the
decision results in Figure 9. The results indicate that we are successful in keeping the in-
stances near the middle of the critical region, at about 50% yes. The step count for KBT is
clearly exponential, while the slope of the other two algorithms appears to decline on the
log scale, indicating a sub-exponential growth rate. This experiment can be repeated for
sets of size up to 1000 if KBT is excluded. KDDP shows consistently better performance
than HSK, and the problems are much easier to solve than the corresponding Subset Sum
instances. With Subset Sum, sets of size 50 trigger the Java ”OutofMemoryError” excep-
tion.

4 Conclusion
The AlgoLab experiments confirm the observation of Martello, Pisinger, and Toth that
Subset Sum, where object weights and values are equal, is much more difficult than the
more general 0/1-Knapsack problem. The backtracking algorithm KBT, whose complexity
is dictated by the set size n, shows step counts that grow exponentially for both problems.

7



Figure 8: Step counts for growing set sizes in the critical region.

Figure 9: Decision results for growing set sizes in the critical region.

8



The step counts of the HSK and KDDP algorithms, however, which are variants of dynamic
programming with dynamically allocated lists of partial solutions, exhibit more moderate
growth rates for the Knapsack problem. It is interesting that the published complexities of
the two problems are the same when the complexity parameter is n. A distinction is found,
at least for the KDDP algorithm, only when the complexity parameter is x, the total bit
length of the problem instance. The complexity classification using parameter x appears to
be a better match for the empirical evidence.

References
[1] I. Gent and T. Walsh, Phase Transitioning and Annealed Theories: Number Parti-

tioning as a Case Study, Instituto per la Ricerca Scientifica e Tecnologica (IRST),
Technical Report #9601-06 (1996).

[2] E. Horowitz and S. Sahni, Computing Partitions with Applications to the Knapsack
Problem, Journal of the Association for Computing Machinery 21:2(1974), pp. 277-
292.

[3] S. Martello, D. Pesinger, P. Toth, Dynamic Programming and Strong Bounds for the
0-1 Knapsack Problem, Management Science 45 (1999), pp. 414-424.

[4] S. Mertens, The Easiest Hard Problem: Number Partitioning, Inst. f. Theor. Physik,
University of Magdeburg, Magdeburg, Germany (2003).

[5] T. E. O’Neil, A Virtual Laboratory for Study of Algorithms, Proceedings of the 42nd
Midwest Instruction and Computing Symposium (Rapid City, SD, 2009).

[6] T. E. O’Neil, Sub-Exponential Algorithms for 0/1 Knapsack and Bin Packing, Pro-
ceedings of the 2011 International Conference on Foundations of Computer Science
(CSREA Press, 2011), pp. 209–214.

[7] T. E. O’Neil, An Empirical Study of Algorithms for the Subset Sum Problem, Pro-
ceedings of the 46th Midwest Instruction and Computing Symposium (LaCrosse, WI,
2013).

[8] T. E. O’Neil, Complement, Complexity, and Symmetric Representation, International
Journal of Foundations of Computer Science 26:5 (World Scientific, August 2015),
pp. 557-581.

[9] T. E. O’Neil, Improved Strongly Sub-Exponential Algorithms for Subset Sum and
0/1-Knapsack, submitted for publication, March 2016.

[10] R. Stearns and H. Hunt, Power Indices and Easier Hard Problems, Mathematical Sys-
tems Theory 23 (1990), pp. 209–225.

[11] G. J. Woeginger, Exact Algorithms for NP-Hard Problems: A Survey, Lecture Notes
in Computer Science 2570 (Springer-Verlaug, Berlin, 2003), pp. 185-207.

9


