
 1

Problem 1—UND

Professor Plum likes it when MICS is hosted by the University of North Dakota since they hosted the first

Symposium in 1967. He wants you to write a program to generate ASCII art printing “UND” vertically for a

sign to hang on his door. Since he is unsure of the door's dimensions, he wants your program to take as input a

positive integer scaling factor. The first several scaling factors with corresponding letter dimensions (height x

width) are specified by the following table:

Scaling

Factor

U and N Letter

Dimension

(# chars × # chars)

D Letter Dimension

(# characters × #

characters)

Line Width of

Letters

(# characters)

Blank Lines

Between Letters

U and N

Blank Lines

Between Letters

N and D

1 3 × 5 4 × 5 1 1 0

2 5 × 10 6 × 10 2 2 1

3 7 × 15 8 × 15 3 3 2

4 9 × 20 10 × 20 4 4 3

5 11 × 25 12 × 25 5 5 4

A scaling factor of 1 would produce:
| |

| |

___/

|\ |

| \ |

| \|

| \

| |

|___/

A scaling factor of 2 would produce:
|| ||

|| ||

|| ||

||______||

______//

||\\ ||

|| \\ ||

|| \\ ||

|| \\ ||

|| \\||

||______\\

|| ||

|| ||

||______||

||______//

Input Format

The input contains a single line with a positive integer scaling factor for the sign.

 2

Output Format

The output should contain the ASCII art for the sign corresponding to the scaling factor specified by the input.

Input Sample
4

Output Sample
||||············||||<EOLN>  NOTICE THE DOTS (‘·’) REPRESENT BLANK SPACES

||||············||||<EOLN>  AND <EOLN> REPRESENTS END-OF-LINE.

||||············||||<EOLN>  THERE SHOULD BE NO DOTS AND “<EOLN>” STRINGS IN

||||············||||<EOLN>  YOUR ACTUAL OUTPUT
||||············||||<EOLN>
||||____________||||<EOLN>
||||____________||||<EOLN>
||||____________||||<EOLN>
____________////<EOLN>
<EOLN>

<EOLN>

<EOLN>

<EOLN>

||||\\\\········||||<EOLN>
||||·\\\\·······||||<EOLN>
||||··\\\\······||||<EOLN>
||||···\\\\·····||||<EOLN>
||||····\\\\····||||<EOLN>
||||·····\\\\···||||<EOLN>
||||······\\\\··||||<EOLN>
||||·······\\\\·||||<EOLN>
||||········\\\\||||<EOLN>

<EOLN>

<EOLN>

<EOLN>

 ____________<EOLN>

||||____________\\\\<EOLN>
||||____________||||<EOLN>
||||____________||||<EOLN>
||||············||||<EOLN>
||||············||||<EOLN>
||||____________||||<EOLN>
||||____________||||<EOLN>
||||____________||||<EOLN>
||||____________////<EOLN>
<EOF>

 3

Problem 2—Stamp Out Holes

Professor Plum is somewhat compulsive about postage stamps when he travels because he likes to mail home

souvenirs from the road. Before leaving for MICS, he packed his postage scale and filled his pocket with a

hand full of stamps from home. As he drives the van, he wants you to inventory his stamps and write a program

to determine the least amount of postage that can’t be made using his collection of stamps, and how many

amounts between 0 and the total of all his stamps can’t be made from the pocketful of stamps.

Input Format

The input consists of two lines. The first line contains the current value of a “Forever” stamp. The second line

lists one or more positive integer stamp values or the letter F (for “Forever” stamps). There are at most 25

stamp value(s) on the second line which are all separated by one space.

Output Format

For the given input, compute the least nonnegative integer amount that cannot be made exactly using stamp

values from the input list. Note that it must be greater than zero (which can always be made using no stamps)

and not greater than the total of the stamps plus one. Also compute the number of amounts between zero and the

total of the stamps that cannot be made exactly using stamp values from the input list. Format the output as

shown in the output sample below.

Input Sample
49

20 F 1 4 34 3 5 1 F 20

Output Sample
The least amount that cannot be made exactly is 15

The number of amounts between 0 and 186 that cannot be made exactly is 10

 4

Problem 3—Steganography

Professor Plum thinks of himself as an amateur spy because he likes to dabble in steganography. Steganography

is the process of concealing a secret message, image, or video within another message, image, or video. His

latest scheme is to send a text file of non-negative integers one per line. The integers are nearly random, except

each contains an embedded character code corresponding to a character in the secret message. If each integer is

divided by 30, then the remainder is a numeric character code corresponding to characters according to:

 the character codes 1, 2, 3, 4, 5 …, 21, 22, 23, 24, 25, 26 correspond to the letters 'A', 'B', 'C', 'D',

'E', …, 'U', 'V', 'W', 'X', 'Y', 'Z' respectively,

 the character code 0 corresponds to ' ' (space) character,

 the character code 27 corresponds to '.' (period) character,

 the character code 28 corresponds '?' (question mark) character, and

 the character code 29 corresponds to the end-of-line.

Input Format

The input consists of multiple lines with each containing a single non-negative integer corresponding to a

character in the secret message as described above.

Output Format

The sequence of decoded characters including end-of-lines.

Input Sample
31

0

33

61

62

117

30

93

121

14

29

39

50

30

2

65

88

59

Output Sample
A CAB. CAN

IT BE?

 5

Problem 4—Crazy Eight Divisors

Professor Plum’s favorite number is eight. The eight divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24.

The ten numbers not exceeding 100 having exactly eight divisors are 24, 30, 40, 42, 54, 56, 66, 70, 78 and 88.

Let f(n) be the count of numbers not exceeding n with exactly eight divisors.

Professor Plum has hand-calculated f(100) = 10 and f(1000) = 180, but wants you to write a program for bigger

values of n up to 2,000,000.

Input Format

The input consists of a single line containing a non-negative integer that is ≤ 2,000,000.

Output Format

The output consists of a single line formatted as shown below for the input n = 1000 and f(1000) = 180.

Notice the period at the end of the output line.

Input Sample
1000

Output Sample
The count of numbers not exceeding 1000 with exactly eight divisors is 180.

 6

Problem 5—Valley Sort

Professor Plum likes to bicycle in the Rocky Mountains during his summer vacation. He typically gets dropped

off at the top of a mountain and bikes to the valley below. While writing an array question for his final

examination in CS 101, he invents the notion of a valley sort where the first half of the array is in descending

order and last half of the array is in ascending order. More specifically, the largest item is in the first index, the

second largest item is in the last index, the third largest item is in the second index, the fourth largest item is in

the next to last index, etc.

For example, an array initially order as: 20, 45, 30, 5, 15, 50, 10, 35 would be valley sorted to:

50, 35, 20, 10, 5, 15, 30, 45.

Input Format

The first line of the input file contains an integer count of the number of items to valley sort. The remaining

lines will contain one integer per line.

Output Format

The first line of the output file should contain an integer count of the number of items valley sorted. The

remaining lines will contain one integer per line in valley-sorted order.

Input Sample
8

20

45

30

5

15

50

10

35

Output Sample
8

50

35

20

10

5

15

30

45

 7

Problem 6—Expanding Password

Professor Plum has a hard time remembering passwords, so he has used the same password 9P8L7U6M@52

forever. The IT department has warned him that they are going to require much longer passwords on the

Monday after MICS, but they have not told him the minimum length yet. Professor Plum wants to be prepared

and possibly help others in the same situation. He wants you to write a program to lengthen any password

containing decimal digits (0 to 9) by converting each decimal digit to a lower base. For example his password

9P8L7U6M@52 with each decimal digit converted to base-2 (i.e., binary) would give the longest password of

1001P1000L111U110M@10110.

Since 24-digits might be longer than the IT department’s new password length, he wants to use the largest base

necessary to meet the new IT specified password length. If the password cannot be lengthened enough, then the

base-2 conversion will be used with a suffix of enough ‘@’ characters to reach the desired length. For example

his password 9P8L7U6M@52 expanded to length 30 would be 1001P1000L111U110M@10110@@@@@@.

Input Format

The input consists of multiple lines with each containing a password-length pair separated by a space.

Output Format

For each password-length pair in the input, a single line of output should be produced. Each output line should

be formatted as shown below.

Input Sample
9P8L7U6M@52 8

9P8L7U6M@52 13

9P8L7U6M@52 20

9P8L7U6M@52 30

9P8L7U6M@52 16

=MiCs2015 10

Cat 5

Output Sample
Old password 9P8L7U6M@52 expanded to length 8 is 9P8L7U6M@52

Old password 9P8L7U6M@52 expanded to length 13 is 11P10L7U6M@52

Old password 9P8L7U6M@52 expanded to length 20 is 1001P1000L111U110M@10110

Old password 9P8L7U6M@52 expanded to length 30 is 1001P1000L111U110M@10110@@@@@@

Old password 9P8L7U6M@52 expanded to length 16 is 14P13L12U11M@102

Old password =MiCs2015 expanded to length 10 is =MiCs20110

Old password Cat expanded to length 5 is Cat@@

 8

Problem 7—B/W Photo Copyright

Professor Plum takes a lot of panoramic black-and-white photographs and posts them on his website. He is

concerned about other people posting copies of his photographs without attribution to him. He is especially

concerned about people posting cropped portions of his images, so he wants a program to detect if a candidate

photograph C could be generated by cropping his own photograph T. If the photograph C is found within

photograph T, then the program should report the row and column indexes within T where the upper-left corner

of C was found. Assume the row and column indexes start at 0.

Input Format

The input consists of two black-and-white photographs: C followed by T. The first line of the file will consist

of two positive integers: hC and wC which are the height and width of photograph C. hC lines follow with each

line containing wC integer values separated by single spaces. These integer values all range from 0 to 255 and

represent the intensity value of pixels within the black-and-white photograph.

After the last line of photograph C, is the dimension line for photograph T containing two positive integers: hT

and wT which are the height and width of photograph T. hT lines follow with each line containing wT integer

values separated by single spaces.

Output Format

Two outcomes are possible with each producing a single line. If C is not found in T, then the output line should

be:
Photograph C was not found in T

If C is found in T starting at say row 25 and column 10, then the output line should be:
Photograph C was found in T starting at row 25 and column 10

Note: Input Sample and Output Sample are on the next page

 9

Input Sample
10 15

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

20 25

88

88

88 88 88 88 88 88 88 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 88 88 88

88 88 88 88 88 88 88 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 88 88 88

88 88 88 88 88 88 88 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 88 88 88

88 88 88 88 88 88 88 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 88 88 88

88 88 88 88 88 88 88 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 88 88 88

88 88 88 88 88 88 88 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 88 88 88

88 88 88 88 88 88 88 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 88 88 88

88 88 88 88 88 88 88 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 88 88 88

88 88 88 88 88 88 88 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 88 88 88

88 88 88 88 88 88 88 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 88 88 88

88

88

88

88

88

88

88

88

Output Sample
Photograph C was found in T starting at row 2 and column 7

