

Polygon-Based Stereo Matching Using Normalized Cross-

Correlation

Bjorn Mellem & Francois Guiot

Computer Science

St. Olaf College

1500 St. Olaf Avenue

Northfield, MN 50057

mellem@stolaf.edu, guiot@stolaf.edu

Abstract

The stereo matching problem is at the heart of three dimensional computer vision

research. In this paper we investigate a new algorithm for stereo matching for use in real-

world datasets. Since these images suffer from variations in brightness and contrast, we

chose normalized cross correlation as a basis for comparison between the two images.

We present an efficient algorithm for window-based stereo matching based on

normalized cross correlation. This method scales with the disparity volume in question

and performs well in practical implementation. We discuss the run time of the algorithm

in terms of both algorithmic complexity and issues of cache coherence. The algorithm is

very fast in a CPU implementation and possesses room for improvement either by

increasing cache coherence or implementing on an accelerator chip or GPU.

1

Introduction

In this paper we discuss an efficient stereo matching algorithm for use on real-world

datasets. Our aim is to develop a robust method of stereo matching to be used for

translating paired images of objects and spaces into three-dimensional models. We

model our algorithm on the first two stages of Zeng-Fu Wang and Zhi-Gang Zheng’s

cooperative optimization algorithm, presented in “A Region Based Matching Algorithm

Using Cooperative Optimization” (Wang and Zheng, 1-3).

The algorithm begins with a window-based stereo matching phase to establish disparity

estimates for as many points as possible. This phase uses normalized cross correlation as

a basis for comparing two windows. We present an efficient and exact method for

calculating normalized cross correlation which scales with the disparity volume of the

image pair in question.

The algorithm then uses segmentation of the reference image (here, the left image) into

polygons to identify planar surfaces in the image. We use the RANSAC algorithm to fit

a disparity plane to each polygon in the left image. During this phase, our goal is to fill

gaps in data and lessen the influence of outliers on the final disparity map. We add

several constraints to the processing and results of the RANSAC algorithm to handle

poor data quality.

Finally, we aim to extend the algorithm to include the direct comparison of polygons.

For this stage we segment both the left and right images and compare edges and paths in

the left image to their counterparts in the right image.

Window-Based Normalized Cross Correlation

The first stage of our algorithm is a window-based method for calculating disparities

using normalized cross correlation. Use of normalized cross correlation is motivated by

its invariance under brightness and contrast variations. This allows it to accurately

identify matches between real-world images suffering from common variations in data

(Zhao et. al., 1).

The idea of normalized cross correlation is to find a pair of pixels in the left image and

 in the right image which maximize a correlation coefficient. The difference between

2

the image coordinates of these two pixels gives the disparity for the pixel pair. For

normalized cross correlation, the coefficient to maximize is defined by

 ()

∑ (())̅(() ̅)

where and range over the window around pixel , () is difference between the

location of pixel in the left image and pixel in the right image, is the number of

pixels in each window, and () and () are the intensities of pixel () in the

left or right images, respectively. The mean values ̅and ̅ are taken to range over the

pixels in the left and right windows, respectively, as are the standard deviations and

 .

Direct computation of this coefficient can be extremely costly, especially the computation

of the standard deviations and . We adopted a method for computing based on the

formulas

∑ ()

 ̅

and

 ̅

∑ ()

These sums can be efficiently calculated using integral images over and , as shown

by J. P. Lewis in “Fast Normalized Cross-Correlation” (Lewis, 4) and Briechle and

Hanebeck in “Template Matching using Fast Normalized Cross Correlation” (Briechle

and Hanebeck, 3). The same method is applied to calculating and ̅.

Calculating the numerator of normalized cross correlation can also be computationally

intensive. Several variations on a Fast Fourier Transform can be used. However, these

require preprocessing using spectral filtering or careful choice of frequency cutoff

parameters (Lewis, 3-4). A more recent approach involves calculating the numerator by

approximating the factor () ̅ using rectangular basis functions (Briechle

and Hanebeck, 4).

We offer a method for computing the numerator both quickly and exactly. We begin by

expanding the multiplication in the numerator:

(())̅(() ̅)

 () () () ̅ () ̅ ̅̅

We wish to calculate the composite sum

3

∑ () ()

 ∑ () ̅

 ∑ () ̅

 ∑ ̅̅

Since ̅and ̅ are constant over in the summations, the last sum can be calculated as

 ̅ ̅ using the values of ̅ and ̅ which were computed along with standard deviations.

Furthermore, the second and third sums can be computed from the integral images of

and , simply multiplying by the constant mean values. The first term, ∑ () (

), is the only issue.

This can be solved by calculating integral images of the product over the range of

possible disparity values . One integral image is needed for each

disparity . Using integral images in this way ensures that the intensity of any pixel on

the left image is multiplied by the intensity of a given pixel on the right image at most

once.

Efficiency of the NCC Matching Algorithm

We now show that our algorithm for matching runs in () time, where and

 are the dimensions of the image pair in pixels and is the maximum

allowed disparity value. We assume the image pair is properly rectified, so that is the

number of possible windows in the right image to which a reference window in the left

image must be compared.

Our algorithm first calculates integral images for , , , and . Each integral image

takes () time to compute. This is accomplished through the standard dynamic

programming rule () () () () (),

where is , , , or , and () is the value of the integral image at position ()

(Briechle and Hanebeck, 3).

Next, we pre-compute the sums ∑ () , ∑ ()
 , ∑ () , and

∑ ()

, means ̅and ̅, and standard deviations and . These must be

computed for each window to be considered in either image. There will be

approximately such windows, one for each pixel in the image. These can be

computed in constant time using the previously calculated integral images (Briechle and

Hanebeck, 3). Thus these computations add only () to the algorithm’s run time.

The algorithm proceeds through each of the disparity values. At each value, it

computes an integral image of . It then computes the correlation coefficient for each of

the windows. It computes ∑ () () in three

4

addition/subtraction operations per window using the integral image of . The rest of

the quantities involved in the correlation coefficient can be drawn from pre-calculated

values and assembled into the NCC coefficient in nine more arithmetic operations. Thus

computing the correlation coefficient for a single value of () occurs in constant

time. The total operations for computing these values is then () for the

correlation coefficients plus () for the integral images of .

Therefore, the algorithm as a whole scales with the disparity volume .

Cache Coherence in the NCC Algorithm

The normalized cross correlation algorithm owes its speed to pre-computing numerous

means, standard deviations, and integral images. Storing this data can be memory

intensive and cache coherence has a powerful impact on practical running time. The

naïve approach of pre-computing all the integral images involved in the algorithm causes

run time to suffer tremendously.

We approached this problem by filling the disparity volume one disparity value at a

time. This allowed us to keep one integral image of in memory along with pre-

computed means, sums, and integral images of , , , and .

Nonetheless, cache coherence has an impact on larger images. Instrumenting our

implementation revealed a slowdown for images of 582 by 377 pixels and larger.

Computation of the time per operation resulted in a at most of seconds per

operation for larger images. A small, 113 by 94 pixel image took only

seconds per operation. Computing the disparity volume by more localized chunks

instead of dividing it solely by disparity value may improve cache coherence and reclaim

this lost performance.

Polygon Segmentation

By using the color variations which occur in an image, it is possible to divide each image

into polygons by gathering pixel of similar colors. We will assume that these polygons

represent flat surfaces in three dimensional space. A separate process first divides images

into polygons, placing edges along strong color changes. It then merges polygons which

are part of the same surface. We use the output of this process to identify regions of each

image which are planes in three-dimensional space.

5

RANSAC Plane-Fitting

The normalized cross correlation method creates good disparity maps but is neither error-

free nor complete. Fitting a disparity plane to each available polygon can improve initial

results. Since these polygons are supposed to represent planar surfaces within the image,

disparity should vary smoothly over all points in a polygon. We fit a plane of the form

 () to each polygon based on the computed disparities. Any three

disparity values are sufficient to compute such a plane. However, some points may be

outliers with incorrect disparity values. In order to reduce the influence of these outliers

we use the RANSAC algorithm (Fischler and Bolles).

This algorithm fits an arbitrary number of plane generated from randomly picked points

and checks how many other points fit those planes. The plane which receives the highest

number of votes is considered to be the best plane for that polygon. Disparity values for

all points in the polygon are then recomputed using this disparity plane (Fischler and

Bolles).

We added checks to the RANSAC method to ensure that generated disparities are

reasonable. If the number of data points in a polygon is below a threshold value, we

discard the polygon. Once a plane has been computed for a polygon, we compute the

new disparity of each vertex. If the new disparity for any vertex is above the maximum

or below the minimum disparity obtained from the window based method, the computed

plane is rejected and the polygon is discarded. Finally, points are weighted by their

distance from the nearest edge of the polygon they inhabit. Points farther from the edges

of a polygon are given higher weight than those near edges. This reduces the impact of

foreground fattening in the window-based method.

Path-Based Matching

We then generally assume that edges of the created polygons will matches actual edges

within the image. We also know that real edges in the image should appear in both

images with an offset corresponding to the disparities of pixels along these edges. Thus

we can create a disparity map from two images by matching edges in the two images and

calculating the offset at each point along an edge.

Differences in luminosity or occlusions can lead to variations in the number of polygons

or edges between the left and right images. A single surface in one image may be split

into several polygons in the other, complicating the matter of matching edges. However,

strong edges between separate surfaces should still appear as edges of polygons in both

6

images. Thus it is possible to find those strong edges in both images and to compare

them, while ignoring edges from which relevant information cannot be retrieved.

One approach is to compare edges situated on fast color changes within the image.

However, these edges can be short and vary highly between the two images. Instead, a

notion of an extended path is necessary. A path represents a set of continuous edges. We

can compare two paths by overlaying their endpoints and computing the average distance

between them.

A path can, for example, represent one edge of a table. The surface of the table has a

varying disparity as all the table is not at the same depth. However, the table is a plane,

so disparities will very smoothly across the table. Variations in disparity will shift and

warp the edges of the table from one image to the other. However, we can find a linear

transformation that will map the path to its corresponding path on the other image. In

order to compute how much an edge shifts, we fit a disparity line to the edge.

If this transformation is accurately applied, the average distance between corresponding

paths should be quite small. The main problem is therefore to find relevant paths among

the data we can retrieve from the polygons and determine which paths to compare. Any

set of continuous edges between the same two polygons should separate two surfaces.

These are the paths which we wish to compare. In order to minimize statistical variations

among edges, we wish to choose paths which are as long and clear as possible.

In order to aggregate edges into relevant paths that appear in both images of a matching

pair, we introduce a notion of continuity between edges. Edges in an image can be

represented with a graph where each edge is a node and where its neighbors are nodes

sharing its vertices. For manufactured environments, most edges between planes are

straight. The continuity between two neighboring edges is simply the angle between

those edges. If the continuity between two neighboring edges is close to 180°, those

edges should be merged into the same path for comparison between images.

Conclusion

We used our process to generate disparity maps for real-world image pairs taken from

Regents Hall of Natural Sciences at St. Olaf College and on the “teddy” image from the

Middlebury benchmark site (“Middlebury Stereo Evaluation”). The normalized cross

correlation algorithm ran quickly when implemented on the CPU only. The “teddy”

image took about 9.5 seconds to run, while full-sized, 2326 by 1508 real-world data took

8 minutes to process. RANSAC also executed quickly, taking about 1.5 seconds per

image. The algorithm still has room for improving the implementation either by

increasing cache coherence or implementing it on a GPU or equivalent accelerator chip.

7

Rectification problems present in the full-sized data prevented disparity maps from

reaching the highest qualities.

The path based comparison method is still a work in progress. We have implemented a

method of combining edges into paths, but have yet to see results from that algorithm

either in terms of speed or output data quality.

References

Briechle, K., & Hanebeck, U. D. (2001). Template Matching using Fast Normalized

Cross Correlation. Proceedings of SPIE, 1-8.

Fishcler, M., & Bolles, R. (1981). Random Sample Consensus: A Paradigm for Model

Fitting with Application to Image Analysis and Automated Cartography.

Communications of the ACM, 381-395.

Lewis, J. P. (1995). Fast Normalized Cross-Correlation. Vision Interface, 1-7.

Wang, Z.-F., & Zheng, Z.-G. (2008). A Region Based Stereo Mathing Algorithm Using

Cooperative Optimization. IEEE Conference on Computer Vision and Pattern

Recognition, 1-8.

Zhao, F., Huang, Q., & Gao, W. (2006). Image matching by normalized cross-correlation.

IEEE International Conference on Acoustics, Speech, and Signal Processing

Proceedings.

