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Abstract 

 
The stereo matching problem is at the heart of three dimensional computer vision 

research. In this paper we investigate a new algorithm for stereo matching for use in real-

world datasets. Since these images suffer from variations in brightness and contrast, we 

chose normalized cross correlation as a basis for comparison between the two images. 

We present an efficient algorithm for window-based stereo matching based on 

normalized cross correlation. This method scales with the disparity volume in question 

and performs well in practical implementation. We discuss the run time of the algorithm 

in terms of both algorithmic complexity and issues of cache coherence. The algorithm is 

very fast in a CPU implementation and possesses room for improvement either by 

increasing cache coherence or implementing on an accelerator chip or GPU. 
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Introduction 

In this paper we discuss an efficient stereo matching algorithm for use on real-world 

datasets.  Our aim is to develop a robust method of stereo matching to be used for 

translating paired images of objects and spaces into three-dimensional models.  We 

model our algorithm on the first two stages of Zeng-Fu Wang and Zhi-Gang Zheng’s 

cooperative optimization algorithm, presented in “A Region Based Matching Algorithm 

Using Cooperative Optimization” (Wang and Zheng, 1-3). 

The algorithm begins with a window-based stereo matching phase to establish disparity 

estimates for as many points as possible.  This phase uses normalized cross correlation as 

a basis for comparing two windows.  We present an efficient and exact method for 

calculating normalized cross correlation which scales with the disparity volume of the 

image pair in question. 

The algorithm then uses segmentation of the reference image (here, the left image) into 

polygons to identify planar surfaces in the image.  We use the RANSAC algorithm to fit 

a disparity plane to each polygon in the left image.  During this phase, our goal is to fill 

gaps in data and lessen the influence of outliers on the final disparity map.  We add 

several constraints to the processing and results of the RANSAC algorithm to handle 

poor data quality. 

Finally, we aim to extend the algorithm to include the direct comparison of polygons.  

For this stage we segment both the left and right images and compare edges and paths in 

the left image to their counterparts in the right image. 

 

Window-Based Normalized Cross Correlation 

The first stage of our algorithm is a window-based method for calculating disparities 

using normalized cross correlation.  Use of normalized cross correlation is motivated by 

its invariance under brightness and contrast variations.  This allows it to accurately 

identify matches between real-world images suffering from common variations in data 

(Zhao et. al., 1). 

The idea of normalized cross correlation is to find a pair of pixels   in the left image and 

  in the right image which maximize a correlation coefficient.  The difference between 
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the image coordinates of these two pixels gives the disparity for the pixel pair.  For 

normalized cross correlation, the coefficient to maximize is defined by 

 (   )  
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where   and   range over the window around pixel  , (   ) is difference between the 

location of pixel   in the left image and pixel   in the right image,   is the number of 

pixels in each window, and  (   ) and  (   ) are the intensities of pixel (   ) in the 

left or right images, respectively.  The mean values   ̅and  ̅ are taken to range over the 

pixels in the left and right windows, respectively, as are the standard deviations    and 

  . 

Direct computation of this coefficient can be extremely costly, especially the computation 

of the standard deviations    and   .  We adopted a method for computing   based on the 

formulas 
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These sums can be efficiently calculated using integral images over   and   , as shown 

by J. P. Lewis in “Fast Normalized Cross-Correlation” (Lewis, 4) and Briechle and 

Hanebeck in “Template Matching using Fast Normalized Cross Correlation” (Briechle 

and Hanebeck, 3).  The same method is applied to calculating    and  ̅. 

Calculating the numerator of normalized cross correlation can also be computationally 

intensive.  Several variations on a Fast Fourier Transform can be used.  However, these 

require preprocessing using spectral filtering or careful choice of frequency cutoff 

parameters (Lewis, 3-4).  A more recent approach involves calculating the numerator by 

approximating the factor  (       )   ̅ using rectangular basis functions (Briechle 

and Hanebeck, 4). 

We offer a method for computing the numerator both quickly and exactly.  We begin by 

expanding the multiplication in the numerator: 

( (   )   )̅( (       )   ̅)

  (   ) (       )   (       ) ̅   (   ) ̅    ̅̅ 

We wish to calculate the composite sum 
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Since   ̅and  ̅ are constant over     in the summations, the last sum can be calculated as 

   ̅ ̅ using the values of   ̅ and  ̅ which were computed along with standard deviations.  

Furthermore, the second and third sums can be computed from the integral images of   

and  , simply multiplying by the constant mean values.  The first term, ∑  (   ) (     

     ), is the only issue. 

This can be solved by calculating integral images of the product    over the range of 

possible disparity values              .  One integral image is needed for each 

disparity  .  Using integral images in this way ensures that the intensity of any pixel   on 

the left image is multiplied by the intensity of a given pixel   on the right image at most 

once. 

 

Efficiency of the NCC Matching Algorithm 

We now show that our algorithm for matching runs in  (     ) time, where    and 

   are the dimensions of the image pair in pixels and             is the maximum 

allowed disparity value.  We assume the image pair is properly rectified, so that   is the 

number of possible windows in the right image to which a reference window in the left 

image must be compared. 

Our algorithm first calculates integral images for  ,   ,  , and   .  Each integral image 

takes  (    ) time to compute.  This is accomplished through the standard dynamic 

programming rule  (   )   (   )   (     )   (     )   (       ), 

where   is  ,   ,  , or   , and  (   ) is the value of the integral image at position (   ) 

(Briechle and Hanebeck, 3). 

Next, we pre-compute the sums ∑  (   )   , ∑  (   ) 
   , ∑  (       )   , and 

∑  (       )   
 
, means   ̅and  ̅, and standard deviations    and   .  These must be 

computed for each window to be considered in either image.  There will be 

approximately      such windows, one for each pixel in the image.  These can be 

computed in constant time using the previously calculated integral images (Briechle and 

Hanebeck, 3).  Thus these computations add only  (    ) to the algorithm’s run time. 

The algorithm proceeds through each of the   disparity values.  At each value, it 

computes an integral image of   .  It then computes the correlation coefficient for each of 

the      windows.  It computes ∑  (   ) (       )    in three 
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addition/subtraction operations per window using the integral image of   .  The rest of 

the quantities involved in the correlation coefficient can be drawn from pre-calculated 

values and assembled into the NCC coefficient in nine more arithmetic operations.  Thus 

computing the correlation coefficient for a single value of (     ) occurs in constant 

time.  The total operations for computing these values is then  (     ) for the 

correlation coefficients plus  (     ) for the integral images of   . 

Therefore, the algorithm as a whole scales with the disparity volume      . 

 

Cache Coherence in the NCC Algorithm 

The normalized cross correlation algorithm owes its speed to pre-computing numerous 

means, standard deviations, and integral images.  Storing this data can be memory 

intensive and cache coherence has a powerful impact on practical running time.  The 

naïve approach of pre-computing all the integral images involved in the algorithm causes 

run time to suffer tremendously. 

We approached this problem by filling the disparity volume one disparity value   at a 

time.  This allowed us to keep one integral image of    in memory along with pre-

computed means, sums, and integral images of  ,   ,  , and   . 

Nonetheless, cache coherence has an impact on larger images.  Instrumenting our 

implementation revealed a     slowdown for images of 582 by 377 pixels and larger.  

Computation of the time per operation resulted in a at most of          seconds per 

operation for larger images.  A small, 113 by 94 pixel image took only          

seconds per operation.  Computing the disparity volume by more localized chunks 

instead of dividing it solely by disparity value may improve cache coherence and reclaim 

this lost performance. 

 

Polygon Segmentation 

By using the color variations which occur in an image, it is possible to divide each image 

into polygons by gathering pixel of similar colors.  We will assume that these polygons 

represent flat surfaces in three dimensional space.  A separate process first divides images 

into polygons, placing edges along strong color changes.  It then merges polygons which 

are part of the same surface.  We use the output of this process to identify regions of each 

image which are planes in three-dimensional space. 
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RANSAC Plane-Fitting 

The normalized cross correlation method creates good disparity maps but is neither error-

free nor complete.  Fitting a disparity plane to each available polygon can improve initial 

results.  Since these polygons are supposed to represent planar surfaces within the image, 

disparity should vary smoothly over all points in a polygon.  We fit a plane of the form 

 (   )          to each polygon based on the computed disparities.  Any three 

disparity values are sufficient to compute such a plane.  However, some points may be 

outliers with incorrect disparity values.  In order to reduce the influence of these outliers 

we use the RANSAC algorithm (Fischler and Bolles).  

This algorithm fits an arbitrary number of plane generated from randomly picked points 

and checks how many other points fit those planes.  The plane which receives the highest 

number of votes is considered to be the best plane for that polygon.  Disparity values for 

all points in the polygon are then recomputed using this disparity plane (Fischler and 

Bolles). 

We added checks to the RANSAC method to ensure that generated disparities are 

reasonable.  If the number of data points in a polygon is below a threshold value, we 

discard the polygon.  Once a plane has been computed for a polygon, we compute the 

new disparity of each vertex.  If the new disparity for any vertex is above the maximum 

or below the minimum disparity obtained from the window based method, the computed 

plane is rejected and the polygon is discarded.  Finally, points are weighted by their 

distance from the nearest edge of the polygon they inhabit.  Points farther from the edges 

of a polygon are given higher weight than those near edges.  This reduces the impact of 

foreground fattening in the window-based method. 

 

Path-Based Matching 

We then generally assume that edges of the created polygons will matches actual edges 

within the image.  We also know that real edges in the image should appear in both 

images with an offset corresponding to the disparities of pixels along these edges.  Thus 

we can create a disparity map from two images by matching edges in the two images and 

calculating the offset at each point along an edge. 

Differences in luminosity or occlusions can lead to variations in the number of polygons 

or edges between the left and right images.  A single surface in one image may be split 

into several polygons in the other, complicating the matter of matching edges.  However, 

strong edges between separate surfaces should still appear as edges of polygons in both 
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images.  Thus it is possible to find those strong edges in both images and to compare 

them, while ignoring edges from which relevant information cannot be retrieved. 

One approach is to compare edges situated on fast color changes within the image.  

However, these edges can be short and vary highly between the two images.  Instead, a 

notion of an extended path is necessary.  A path represents a set of continuous edges.  We 

can compare two paths by overlaying their endpoints and computing the average distance 

between them. 

A path can, for example, represent one edge of a table.  The surface of the table has a 

varying disparity as all the table is not at the same depth.  However, the table is a plane, 

so disparities will very smoothly across the table.  Variations in disparity will shift and 

warp the edges of the table from one image to the other.  However, we can find a linear 

transformation that will map the path to its corresponding path on the other image.  In 

order to compute how much an edge shifts, we fit a disparity line        to the edge.  

If this transformation is accurately applied, the average distance between corresponding 

paths should be quite small.  The main problem is therefore to find relevant paths among 

the data we can retrieve from the polygons and determine which paths to compare.  Any 

set of continuous edges between the same two polygons should separate two surfaces.  

These are the paths which we wish to compare.  In order to minimize statistical variations 

among edges, we wish to choose paths which are as long and clear as possible. 

In order to aggregate edges into relevant paths that appear in both images of a matching 

pair, we introduce a notion of continuity between edges.  Edges in an image can be 

represented with a graph where each edge is a node and where its neighbors are nodes 

sharing its vertices.  For manufactured environments, most edges between planes are 

straight.  The continuity between two neighboring edges is simply the angle between 

those edges.  If the continuity between two neighboring edges is close to 180°, those 

edges should be merged into the same path for comparison between images. 

 

Conclusion 

We used our process to generate disparity maps for real-world image pairs taken from 

Regents Hall of Natural Sciences at St. Olaf College and on the “teddy” image from the 

Middlebury benchmark site (“Middlebury Stereo Evaluation”).  The normalized cross 

correlation algorithm ran quickly when implemented on the CPU only.  The “teddy” 

image took about 9.5 seconds to run, while full-sized, 2326 by 1508 real-world data took 

8 minutes to process.  RANSAC also executed quickly, taking about 1.5 seconds per 

image.  The algorithm still has room for improving the implementation either by 

increasing cache coherence or implementing it on a GPU or equivalent accelerator chip.  



   
 

7 
 

Rectification problems present in the full-sized data prevented disparity maps from 

reaching the highest qualities. 

The path based comparison method is still a work in progress.  We have implemented a 

method of combining edges into paths, but have yet to see results from that algorithm 

either in terms of speed or output data quality. 
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