Three Approaches to Solving the Motif-Finding Peatl

Zachariah Huebener Kylie Vapulten
Computer Science Department Computesrfsel Department
Simpson College Simpsotiege
Indianola, 1A 50125 Indianola,50125
zach.huebener@my.simpson.edu kylie.vanh@itepnsimpson.edu
Abstract

The purpose of this paper is to analyze three ndstior solving the Motif-Finding
problem. The Motif-Finding problem is the problemfinding patterns in sequences of
DNA. The methods we analyze compare many DNA sgaricequal length and find the
most closely-matching sequences of a certain leimgéach strand. These patterns are of
great scientific interest to those doing researclgenetics because they correspond to
sequences of DNA that control the activation ofcdpegenes.

In this paper we compare the brute force methaa ptanch and bound method, and the
greedy method as ways of solving the problem. Thenanalyze the complexity and
running time of the methods. Our experimental tssshow that the greedy algorithm
can find an approximate solution to large filesairreasonable amount of time. The
branch and bound method is more efficient thanlithege force method, but neither
method is able to find solutions for files with mothan 10 strands of DNA in a
reasonable amount of time.

1 Introduction

Motif finding is described as “the problem of .sdbvering of motifs without any prior
knowledge of how the motifs look” [1]. But what & motif? An Introduction to
Bioinformatics Algorithms by Neil C. Jones and Pavel A. Pevzner describgslatory
motifs as binding sites in strands of DNA that e certain genes, such as immunity
genes, at the proper time. Proteins bind to thesdiry sites and encourage RNA
polymerase to make an exact copy of the genes sagefor fighting infections.

For instance, when a fruit fly becomes infecte@d immunity genes that are normally
dormant in the fly genome become active to staxtipcing proteins that will destroy the
pathogen. The regulatory motifs tell the genesctorate, so it is of great importance for
biologists to know what these motifs are and hoeytfunction. Unfortunately, it is no
easy task to determine what these motifs are. @neat simply look at a fly under a
microscope and see what each part of the DNA stisadding. The best approach that is
currently known is to analyze many strands of DN @earch for patterns because the
patterns might be the motifs in question.

The strands of DNA are represented as strings wijth ¢, and g denoting the four
possible nucleotide bases adenine, thymine, cyosind guanine. It is a simple process,
though by no means a quick process, to find allsipds string patterns and then
determine which pattern has the most identical hestén other DNA strings. However,
this process fails to find motifs with small mutats that do not change their function but
cause them to be distinct from one another in dyao nucleotide sequence. So we
cannot simply search for identical patterns ingtigngs because the motifs will generally
look similar, but not identical.

Assuming we can find a string in each sequencew#at closely matches the others, a
“profile matrix” can be constructed to total thenmber of each nucleotide base in each
position of the strings [1]. The most common letitereach column of the matrix is
concatenated together to form a new string caled‘tonsensus string” [1]. This could
be thought of as the “perfect” motif, and all thieirgs that were found are slight
mutations of it.

The method for finding all of those matches is Median String Method. It uses a
metrics known as the Hamming distance, which gavesimerical answer for the number
of positions that differ between two strings [1prFexample, the string ATGC and the
string AGGA would have a Hamming distance of 2 lseatwo of the positions are
different. For a string of lengihthe method finds the pattern with the same letigthis
the best match (meaning they have the smallest Hagnmiistance) in each DNA
sequence and records the positions within eachesequat which those patterns begin.
The total Hamming distance is the sum of the Hamgnaistance between the original
string and each closest match. Then this processpmsated for every possible distinct
string of lengthl (which is 4! strings) to find the string that has the minimuotak
Hamming Distance.

The string with the minimum total Hamming distarisethe “Median String,” which,
interestingly enough, is the same as the consestsng [1]! So once the Median String
has been found, the original method using the lerafiatrix can be run backwards to find
the closest matching string in each DNA sequeneectbsest match being the one with
the smallest Hamming distance as compared to tlieadéstring. So the best way to find
a motif is to search all possible strings of aaeartength to find the string that has the
closest matches in all the DNA strands and thasgeskt matches are the best possibilities
of being the motif that is being searched for. Tikian exhaustive search method that is
very inefficient even though it delivers an examusion.

In the sections below we discuss three algorithgesiuo solve the motif-finding problem

based on the brute force method, the branch anddooethod, and the greedy method.
First, we briefly introduce three types of treevésals used in the algorithms and a
method to evaluate a string — the Score methodt,Nex discuss the details of the

algorithms. Finally, we present our experimentalits.

2 Tree Traversals and Score M ethod

The method for finding the consensus string thatlascribed inAn Introduction to
Bioinformatics Algorithms generates all possible sets of starting positi@aareays and
then determines the set that produces the bestsus string. A tree is used to generate
all possible sets of starting positions, and three traversal methods are used in the
brute force and the branch and bound algorithmsdbiring the motif-finding problem.

2.1 NextVertex Method
The first tree traversal is called NextVertex.dtjgentially generates every vertex of the

tree from the root to the leaves. The leaves of ttée are used as the sets of starting
positions to search in each DNA sequence for tiséretif.

2.2 NextL eaf M ethod

The NextLeaf method is very similar to the Next\éarimethod, but it only produces the
leaves of the tree and not the other vertices.

2.3 Bypass method

The Bypass method is used in conjunction with tlextMertex method in one of our
approaches to solving the motif-finding problemisltised to skip certain branches in the
tree generated by the NextVertex method if it i'edained that they will not produce a

desired result. When we no longer wish to contime¥ing down a certain branch of the
tree to check those vertices the Bypass methodguwmppand over in the tree to the next
branch to check those vertices.

2.4 Score Method

The DNA score is basically the opposite of the Hangnmdistance. The Hamming
distance totals the number of positions that difietween two strings, but the DNA score
totals the number of positions between two strihgs$ are the same. Thus, a higher score
means that the strings are more identical to oo¢han

The Score method returns the total score of eadsersus string. It first creates the
profile matrix for the DNA, which is an integer ayrwith length four. The profile matrix
compares the motifs found at each position in theent starting position set, and totals
the number of times each letter (a,t,g, and c) coueach column of the matrix. The
letters with the most occurrences in each colunencancatenated together to create the
consensus string. The total DNA score for the cosise string is the sum of the number
of times that each of those letters occurs in ttespective columns.

3 Three Algorithms to Solving the Motif-Finding Problem

We implemented three algorithms to solve the nfotding problem: a brute force
algorithm, a branch and bound algorithm, and adyre¢gorithm.

3.1 Brute Force Algorithm

The brute force algorithm determines the consessursg by determining which set of
starting positions produces the best DNA scores lan exhaustive search because it
checks every possible set of starting positionslgpced by the NextLeaf method.

ALGORITHM BruteForcdDNA, t, n,)

/[Determines the consensus string by finding thetstarting positions that produces the

best DNA score

/lInput: Two-dimensional ArraidNA contains all the strands of DNA to be checked
Integet is the number of DNA strands to be checked
Integen is the length of each DNA strand (they all hawweshme length)
Integer is the length of the consensus string (the motide found)

/[Output: A set of starting positions for the DNAgsiences that produce the best

consensus string. This consensus string is priotéce screen.

1 s<(1,1,...,1)

2 bestScore €< Score(s, DNA)

while forever
s < NEXTLEAF(s, t,n—1 + 1)
if Score(s, DNA) > bestScore
bestScore < Score(s, DNA)
bestMotif € (s, , ..., S)
ifs=(1,1,...,1)
return bestMotif

O©oOo~NO UL W

3.1.1 Complexity

The complexity of the exhaustive search @) wherel is the length of the motify is
the length of the DNA samples, ahds the number of DNA samples. So the method
takes exponentially longer to solve as more DNArgds are checked.

3.2 Branch and Bound Algorithm

The branch and bound algorithm uses a combinatidgheoNextVertex method and the
Bypass method to skip branches of the tree if determined that they cannot produce a
better score than the score that has already bdeamed.

ALGORITHM BranchAndBoundMotifSearctib(NA, t, n, I)
/[Faster brute force method that skips brancheghef tree while determining the
consensus string by finding the set of startingtjprs that produces the best DNA score
/lInput: Two-dimensional ArrafdNA contains all the strands of DNA to be checked
Integet is the number of DNA strands to be checked
Integen is the length of each DNA strand (they all hawesbme length)
Integer is the length of the consensus string (the motideé found)
/[Output: A set of starting positions for the DNA&gsiences that produce the best
consensus string. This consensus string is priotéae screen.

1 s<(1,...,1)

2 bestScore < 0

3 i< 1

4 while i > 0

5 if i <t

6 optimisticScore € Score(s, i, DNA) + (t —i) - |
7 if optimisticScore < bestScore

8 6 1) € BYPASSE,i,t,n—1 +1)

9 else

10 6 i) € NEXTVERTEX(,i,t,n—I| + 1)
11 else

12 if Score(s, DNA) > bestScore

13 bestScore < Score(s)

14 bestMotif € (s, %, ...,)

15 6 i) € NEXTVERTEX(,i,t,n—I + 1)
16 return bestM otif

3.3 Greedy Algorithm

The greedy algorithm does not use any of the afentioned tree traversals because it is
not an exhaustive search method. However, the greesthod does do an exhaustive
search on the first two strands of DNA to deterntime best motif in these two strands.
This motif is called the seed. The method then eetially searches the remaining DNA
strands for the motif in each strand that best hestdhe seed and the motifs that have
already been found.

ALGORITHM GreedyMotifSearch¥NA,t,n,l)

/[Finds the seed in the first two DNA strands tlgiolan exhaustive search and then

linearly finds the motif in the remaining lines timatches the seed.

/lInput: Two-dimensional ArrafdNA contains all the strands of DNA to be checked
Integet is the number of DNA strands to be checked
Integen is the length of each DNA strand (they all hawesbme length)
Integer is the length of the consensus string (the motideé found)

/[Output: A set of starting positions for the DNA&gsiences that produce the best

consensus string by finding the set of startingtjprs that produces the best DNA score

1 bestMotif < (1,1,...,1)

2 s < (1,1,..,1)

3 fors; < 1ton-/+1

4 fors, < 1lton—-/+1

5 if Score(s,2,DNA) > Score(bestMotif, 2, DNA)

6 BestMotif; € s,

7 BestMotif, € s,

8 s, € BestMotif;

9 s, € BestMotif,

10 fori<3tot

11 fors; € 1ton—-/+1

12 if Score(s, i, DNA) > Score(bestMotif, i, DNA)
13 bestMotif; €< s,

14 s; € bestMotif;

15 return bestMotif

3.3.1 Complexity

The complexity of the greedy algorithm is(i@* + nit) wherel is the length of the
motif, n is the length of the DNA samples, anid the number of DNA samples. So this
method has a squared term for the exhaustive seértte first two DNA strands, and

then the rest of the program is a linear searcls iBhmuch faster than the exponential
brute force algorithm and branch and bound algarith

4 Experiments and Analysis of Results

To test the brute force and the branch and bougatithims we created files with varying
numbers of DNA strands and varying numbers of lesigAll of the DNA strands are
actual DNA sequences from a source that our profdesind [2]. We varied the number
of rows and the length of the rows in each filet Within each file every row had the
same length. Our program does not compare rows difftierent lengths. For every trial
that we ran we recorded the time in milliseconddlie program to produce a result.

First, we started with a small number of rows andcsssively increased the length of
these rows. Then we increased the number of rodsamntests with those same lengths
for this increased number of rows. This shows hbe efficiencies of the algorithms
change with respect to the length of the rows &edntumber of rows. Both algorithms
have a linear efficiency with respect to the lengththe rows, but have an exponential
efficiency with respect to the number of rows. Efere, the time they take to compute a
result increases exponentially with the numberowfs being tested.

For the branch and bound algorithm we repeated gbisof tests with files that had
different sets of DNA with the same numbers of ramd row lengths. This is interesting
because the efficiency of the branch and boundrigthgo varies significantly depending
on how many branches of the tree it bypasses. fficeeacy of the brute force algorithm
does not change with different DNA sequences lieltranch and bound algorithm. It is
the same for any file with the same number of rawd the same row length because it
checks all possibilities every time.

The branch and bound algorithm can be much morneieit than the brute force
algorithm if many bypasses are made, but it cam ladsless efficient if very few bypasses
are made. The efficiency of the branch and bougdrahm depends on the sequence of
letters in the DNA strands, so testing on differestis of DNA sequences can sometimes
yield very different results as shown by Table 1.

We did not run the programs with more than 10 rotvBNA because they took far too
long to be of any value. Both the brute force amal iranch and bound methods ran for
more than 60 minutes with a test file of 15 rows.

Rows | Row Length| Brute Force Branch and Bound BramchBound, Second Ruh
5 10 46 milliseconds 62 milliseconds 4Tnilliseconds

5 20 592 milliseconds 515 milliseconds 390 milliseconds

5 30 4,992 milliseconds 3,853 milliseconds 1,919 milliseconds

5 40 24,758 milliseconds 10,811 milliseconds | 3,058 milliseconds

5 60 204,882 milliseconds 27,31 milliseconds | 20,031 milliseconds

10 10 111,154 milliseconds 14,883 milliseconds | 18,877 milliseconds

Table 1: Runtimes for Brute Force and Branch andng8dviethods

As seen in Table 1, the branch and bound algontlasialways faster than the brute force
algorithm. Also, the gap between the running timethe brute force and the branch and
bound algorithms increases as the number of rodshanrow lengths increase.

Another interesting observation from Table 1 is th&nge in running times resulting
from increasing the length of the rows as compacethcreasing the number of rows.
Increasing the length of the rows increased theningntime fairly linearly as the
complexity shows. Increasing the length of the rémyden increased the running time by
a factor of 5 to 10. However, increasing the numiiferows drastically increased the
running time. Increasing the number of rows by&eased the running time of the brute
force method by over 2000 times and the branchbenohd method by over 200 times.
This shows the exponential nature of increasingntin@ber of rows, and this is why it
would not have been profitable to test the algamghwith more than 10 rows of DNA.
They would have taken far too long to yield any megful results.

We also ran the greedy algorithm on test files irmgpgrom 5 rows each containing 10
elements up to 400 rows each containing 120 elesn&hte results are shown in the table
below.

rows | Row length | Run Time (milliseconds)
5 10 0

5 20 15
5 30 32
5 40 31
5 50 32
5 60 47
10 10 16
10 20 0
10 30 32
10 40 32
10 50 31
10 60 47
15 60 78
20 60 62
25 60 63
30 60 47
35 60 46
100 120 63
200 120 116
400 120 296

Table 2: Runtimes for Greedy Method

As seen in Table 2, the greedy algorithm is extitgnfi@st. Its running time is only
comparable to the brute force and the branch amedalgorithms for files of 5 rows
containing 10 elements. For larger files the gresdgrithm is far more efficient. In fact,
the algorithm’s runtime does not even change santly for files as large as 35 rows

7

containing 60 elements-it still runs in 46 millisecls. There does not seem to be a
noticeable pattern in the change in the runtimecags are added or row length is
increased. Even though these file sizes were farldoye for the brute force and the
branch and bound algorithms to find a solutions¢héle sizes seem too small for the
greedy algorithm to show any significant changeruntime. So we ran the greedy
algorithm with much larger files of more than 1@vs each containing more than 120
elements and the runtime was still only in the hadd of milliseconds, which is still
quite efficient.

5 Conclusion

The comparison of the brute force algorithm to branch and bound algorithm in
solving the motif-finding problem showed that while branch and bound algorithm is
more efficient than the brute force algorithm, heitare feasible for even moderate study
sizes. An exhaustive search such as these had\hatage of yielding an exact solution,
but it cannot produce this solution in a time-aéit way. The greedy algorithm is much
more efficient than the other two algorithms, Hdugives an approximate solution that
may not always be a good solution.

Even though the branch and bound algorithm is fak&n the brute force algorithm, it
becomes inefficient at roughly the same point asktute force algorithm. This means
that the branch and bound algorithm will not hedpearchers find solutions to files that
are too big for the brute force algorithm to hanaich is what they would like to do.
The greedy algorithm can find solutions for filbattare much too large for the other two
algorithms to handle. This makes it very desirdbleresearchers who would like to
determine solutions for very large files that camt@ctual DNA information from living
organisms. However, the fact that it produces aoragmate solution, not an exact
solution, presents a problem that would need tadagessed. In short, the brute force and
the branch and bound algorithms are inefficientdolving the motif-finding problem,
and the greedy algorithm can efficiently produceapproximate solution for very large
files.

For future work we would like to investigate ways improve the approximation
generated by the greedy algorithm. The result thatgreedy algorithm produces is
highly dependent on the seed found in the first BA strands, and the approximation
will not be good if the seed is not a good matchh® rest of the strands. This problem
can be addressed by running the greedy algorithmmamy different pairs of strands to
generate approximations from many different sedti® best motif found from all of
these approximations should be much more accuratedn approximation generated by
running the greedy algorithm only one time.

Acknowledgements

We would like to thank Dr. Lydia Sinapova for hesetance in conducting our research
and preparing this paper. This research projectamaducted as part of the Introduction
to Algorithms course at Simpson College.

References

[1] Jones, Neil C., and Pavel A. Pevzrén.Introduction to Bioinformatics Algorithms.

Cambridge, MA: MIT, 2004. Print.

[2] http://www.ncbi.nim.nih.gov/nuccore/XM_00491812port=genbank

