

Test Case Generation from UML Models

Yiwen Wang and Mao Zheng
Department of Computer Science

University of Wisconsin - La Crosse
La Crosse, WI 54601
mzheng@uwlax.edu

Abstract

Software Testing is one of the important phases in the software development life cycle.
The cost of software testing is approximately 50% of the total development cost. In order
to test software in an effective and an efficient manner, the test case should be generated
systematically.

Unified Modeling Language (UML) is the current industrial standard used to assist
software development. It is widely used to describe the requirements and the design of
the software in a number of diagrams. Each diagram provides a view of the system. The
class diagram provides the static configuration, while the interaction diagrams describes
the dynamics of the system behavior.

This paper presents a methodology to generate the test case from a design level class
diagram and an interaction diagram. It is in the category of model-based testing. It is
assumed that the given model is correct and the goal of the testing is to check if the
implementation conforms to the given model. A car rental example is used to illustrate
the test case generation. The test adequacy criteria used in this paper are the coverage for
the model elements, also called the building blocks in the class diagrams and the
interaction diagrams. These criteria are based on the same premise for the underlying
code testing criteria to help define testing objectives. The class diagram defines the
object configuration and the interaction diagram determines the method sequence in the
testing. The generated test cases are compared with a few other UML model-based test
case generation methodologies; they are able to meet the required test adequacy criteria
better.

1

1 Introduction

Software testing refers to execute a program with a set of test cases and compare the
actual output with the expected results. It is one of the most widely used techniques to
improve software quality. It is also considered to be one of the important phases in the
software development life cycle. Today the cost on software testing is approximately
50% of the total development cost. In order to test software in an effective and an
efficient manner, the test case should be generated systematically.

A testing criterion is a rule or a collection of rules that impose testing on a set of test
cases. A testing technique guides the tester through the testing process by including a
testing criterion and a process for creating test cases values [5]. Testers measure the
extent to which a criterion is satisfied in terms of coverage, which is the percent of testing
requirements that are satisfied. Testing criteria can also be used to determine when testing
should stop: testing can stop when tests that satisfy all the criteria have been carried out
successfully. There are various ways to classify adequacy criteria. One of the most
common is by the source of information used to specify testing requirements and in the
measurement of test adequacy. Hence, an adequacy criterion can be specification-based,
design-based, or program-based. The test adequacy criteria used in this paper are the
coverage for the design model elements, also called the building blocks in the class
diagrams and the interaction diagrams.

This paper discusses the technique using the test adequacy criteria mentioned above to
generate a test case from the UML design class and interaction diagrams. The assumption
is that the design is a valid representation of the system’s desired behavior. The tests
generated will primarily evaluate whether the implementation correctly reflects the
design.

The Unified Modeling Language (UML) [8] is an Object Management Group (OMG)
Object-Oriented (OO) modeling language standard that is gaining widespread use in the
software development industry. Modeling a large, complex system can result in a system
model that consists of a variety of diagrams presenting different views of the model. The
class diagram provides the static configuration, while the interaction diagrams describes
the dynamics of the system behavior.

This paper presents a methodology to generate the test case from a design level class
diagram and an interaction diagram. A car rental example is used to illustrate the test case
generation.

2 UML Class and Interaction Diagrams

2.1 Class Diagram

A UML class diagram consists of classes and the relationship among the classes. There
are three types of relationships: association, generalization/specialization and

2

aggregation. Classes represent the problem concepts; associations model the semantic
relationships between problem concepts. Generalization/Specialization, at this concept
class diagram level, describes a categorization from the bottom up approach. The class
that defines common concepts will be the generalization of subclasses. The aggregation is
one kind of association.

Paper [1] extracts three building blocks from the UML class diagram: association and its
multiplicity, generalization/specialization and class attributes. It also defines related
coverage criteria: association-end multiplicity (AEM) criterion, generalization (GN)
criterion and class attributes (CA) criterion. Below is the table of the test criteria.

Association-end multiplicity (AEM) criterion Given a test set T and system
model SM, T must cause each representative multiplicity-pair in SM to be created

Generalization (GN) criterion Given a test set T and a system model SM, T
must cause every specialization defined in a generalization relationship to be created

Class attribute (CA) criterion Given a test set T, a system model SM, and a
class C, T must cause a set of representative attribute value combinations in each instance
of class C to be created

Table 1: Test Criteria for Class Diagrams [1]

All above criteria are expressed in terms of representative values. In order to establish the
set of representative values, a form of category-partition [7] adapted to UML diagrams is
used. Using this method, the value domain is partitioned into equivalence classes, and
one value from each class is selected for the set of representative values. The partitioned
can be determined by either Knowledge-based partition: use knowledge of the problem
domain; or by default partition: use minimum, non-boundary and maximum values. For
example, given a multiplicity m..n, the minimum value partition is {m}, a non-boundary
partition is {m+1, …, n-1}, and the maximum value partition is {n}. After obtaining the
set of representative values, we create the Cartesian Product of each value set, then
identify valid and invalid set. The default partition is used in this research work.

2.2 Interaction Diagram

Interaction diagram describes the intra-object communications. It includes a collaboration
diagram and a sequence diagram. A collaboration diagram characterizes how objects
interact to achieve a behavioral goal. A sequence diagram contain the same interaction
information, but in a different format. In this paper, a collaboration diagram is used to
depict structure and interactions among objects in the system. All message paths criterion
(AMP) [1] is defined to exercise all the message sequences in the collaboration diagram.

All message paths (AMP) criterion Given a test set T and collaboration diagram CD, T
must cause each possible message path (sequence of message numbers) in CD to be taken
at least once.

3

3 Test Case Generation

Testing methods for UML design differ depending on the testing criteria used. In this
paper, we assume the class diagram criteria need to be met as well as the All Message
Paths (AMP) criterion in the collaboration diagram. This assumption comes naturally
from the graph-based criteria.

From the class diagram criteria, we can define a set of target configuration. The test case
is recorded using the format <<sequence_of_signals, start_configuration, prefix>> [1]. A
configuration is a structure of objects that satisfies the constraint expressed in the class
diagrams. A configuration includes 1) the class objects and the links that exist at a given
time, and 2) the value of each attribute in each object in the configuration. The
start_configuration is the configuration on which the test is started. The prefix is a
sequence of signals that can be used to take the system from an initial configuration to the
start_configuration. Once the system is in the chosen start_configuration, a
sequence_of_signals is applied to run the test. The sequence of signals is derived from
the message sequence in a collaboration diagram. Execution of a test case will result in a
trace of configurations and the sequence of signals generated as a result of the test input
sequence.

4. Case Study

To illustrate the testing methodology described, we are using a car rental example to
illustrate the test case generation.

A car rental company has several different types of vehicles (cars, trucks, SUVs
etc.). The rate for a vehicle varies with respect to its type as shown in Table 2. The actual
rental charge includes the rate multiplied by the number of days it is rented, plus
additional charges for the miles the vehicle is driven, if applicable. A customer who
wants to rent a car may ask for a specific type of vehicle or may choose one of the
available vehicles.

Vehicle Type Option Rate per day

Compact/Mid size 2-Door $15.00
Compact/Mid size 4-Door $20.00

Standard/Large/Family size Without Child Seat $30.00
Standard/Large/Family size With Child Seat $40.00

Premium/Luxury $55.00
SUV/Minivan Without TV $55.00
SUV/Minivan With TV $65.00
Convertible $65.00

Table 2: Rental Charge

4

For simplicity, we are assuming a customer can rent only one vehicle at a time and all
payments must be made through credit cards only. This system is intended to keep track
of all the rental records.

The class diagram for the car rental company is shown below in Figure 1.

Figure 1: Car Rental Company’s Class Diagram

The link between the Vehicle class and CurrentRentalInformation class is a “1 to 0..1”
association. A vehicle has two rental statuses in the system: rented out or not. That
implies it has either no or only one current record. A closer look is shown in Figure 2
below.

5

Figure 2 : The link between classes Vehicle and CurrentRentalInformation
Table 3 below are three test cases generated based on the Association-end Multiplicity
criterion. It tested whether the same vehicle can be rented with no current rental record
(invalid input), with one current rental record (valid input) and with two current rental
records (invalid input). Here we also used the information from an association’s
multiplicity to identify valid and invalid inputs. The Coverage column shows the
coverage elements from the class diagram criteria that were actually exercised during the
test.

No Parameters Vehicle-

config
Information-
config

Vehicle
Type

Coverage Expect
Result

Actual
Result

1 V-VehicleID
MHJ689HDG683JG7
I-Info

True False Compact AEM:Vehicle(1)-
PastRentalRecord(0)
CA:Rental information
incorrect

No Record
Found

No record

2 V-VehicleID
MHJ689HDG683JG7
V-Info

True True Compact AEM:Vehicle(1)-
PastRentalRecord(1)
CA:Rental information
correct

Have one
correct
rental
information

Record add
correctly

3 V-VehicleID
MHJ689HDG683JG7
V-Info

True True Compact AEM:Vehicle(1)-
PastRentalRecord(2)
CA:Rental information
correct

Can’t add
two current
rental
record for
one vehicle
at the same
time

Error
Information,
can’t add
the rental
record

Table 3: The Test Case Generated Based on the AEM criterion

The test execution result indicated the implementation confirmed the expected result.

The collaboration diagram for “Return a Vehicle” is shown in Figure 2.

6

Figure 2: The Collaboration Diagram for “Return a Vehicle”

Based on the class diagram criteria and the target configuration using “return a vehicle”,
we generated the test cases below in Table 3.

No Parameter
s

Vehic
le-
config

Informa
tion-
config

Additional
charges

Vehicle
Type

Coverage Expect Result Actual Result

1 I-
VehicleID
I-Info

False False NA NA AEM:Vehicl
e(0)-
PastRentalR
ecord(0)
CA:Rental
information
incorrect, no
additional
charge

Invalid VehicleID
no record found

No record found
with the invalid
VehicleID

2 V-
VehicleID
NG527GK
D648LOD7
I-Info

True False NA Convertible AEM:Vehicl
e(1)-
PastRentalR
ecord(0)
CA:Rental
information
incorrect, no
additional
charge

Cannot add the
past rental
information with
the incorrect
rental information
data.

Cannot add the
past rental
information to the
record

3 V-
VehicleID
NG527GK
D648LOD7
V-Info

True True NA Convertible AEM:Vehicl
e(1)-
PastRentalR
ecord(1)
CA:Rental
information
correct, no
additional
charge

Add the past
rental record
successfully.

Can add the past
rental information
for the input
VehicleID.

4 V-
VehicleID
NG527GK

True True Yes Convertible AEM:Vehicl
e(1)-
PastRentalR

Add the past
rental record
successfully.

Can add the past
rental information
for the input

7

D648LOD7
V-Info

ecord(2)
CA:Rental
information
correct, has
additional
charge

VehicleID.

5 V-
VehicleID
NG527GK
D648LOD6
V-Info

True True NA Convertible AEM:Vehicl
e(2)-
PastRentalR
ecord(1)
CA:Rental
information
correct, no
additional
charge

Add the past
rental record
successfully.

Can add the past
rental information
for the input
VehicleID.

6 V-
VehicleID
MHJ689H
DG683JG7
I-Info

True False NA Compact AEM:Vehicl
e(3)-
PastRentalR
ecord(0)
CA:Rental
information
incorrect, no
additional
charge

No Past Rental
information
matched with the
input VehicleID.

No Past Rental
Record has been
founded.

7 V-
VehicleID
MHJ689H
DG683JG7
V-Info

True True NA Compact AEM:Vehicl
e(3)-
PastRentalR
ecord(1)
CA:Rental
information
correct, no
additional
charge

Can add one Past
Rental
Information with
the input vehicle id

Add one Past
Rental Record
successfully.

8 V-
VehicleID
MHJ689H
DG683JG7
V-Info

True True Yes Compact AEM:Vehicl
e(3)-
PastRentalR
ecord(2)
CA:Rental
information
correct, has
additional
charge

Can add the
Second Past
Rental
Information with
the input vehicle id

Have two past
rental records
with the input
VehicleID.

9 V-
VehicleID
MHJ689H
DG683JG7
V-Info

True True NA Compact AEM:Vehicl
e(3)-
PastRentalR
ecord(3)
CA:Rental
information
correct, has
additional
charge

Can add the third
Past Rental
Information with
the input vehicle id

Have three past
rental records
with the input
VehicleID.

10 V-
VehicleID
MHJ689H
DG683JG8
V-Info

True True NA Compact AEM:Vehicl
e(4)-
PastRentalR
ecord(1)
CA:Rental
information
correct, no
additional
charge

Add the past
rental record
successfully.

Can add the past
rental information
for the input
VehicleID.

Table 3: Test Cases Generated for “Return a Vehicle”

Table 4 below shows the extent the above test cases satisfy the AMP criterion for the
collaboration diagram in Figure 2. The set of test cases in Table 3 are able to satisfy AMP
criterion completely.

Path coverage Test Case
1,2,3b 1
1,2,3a,4,5,6,7,8b,9 1,2,6
1,2,3a,4,5,6,7,8a,9 3,4,5,7,8,9,10

Table 4: Path Coverage

8

This case study also showed that one test case is able to cover quite a few coverage
criteria.

5 Conclusion

There are a lot of development to support the test generation from UML design models,
including sequence diagram, state diagram and activity diagram in addition to class and
collaborations. The various techniques are all based on the graph criteria. However, an
intermediate graph from the UML diagrams is often required to derive the test case. The
testing technique described in this paper is based on [1], and the test case generation is
directly from model elements, not intermediate graph. However, the original paper
mainly discussed using this technique to evaluate the design itself. We used the generated
test cases to evaluate the implementation’s conformance with the system models. We also
adopted the category partition approach to get the function units, then for each function
unit, generate test cases from class diagram criteria. The method sequence from the
interaction diagram is used to generate sequence of the signals in the test case. The
generated test set is also able to meet AMP criterion.

For the same car rental problem, we compared the generated test cases with the test set
using the testing techniques in [3] and [4], the results showed the test case generated from
model elements directly are able to satisfy the all required graph coverage criteria
discussed in those approaches.

References

[1] Andrew, R. France, S. Ghose, G. Craig. “Test Adequacy Criteria for UML Design
Models”. Journal of Software Testing, Verification and Reliability 13 : 95-127, 2003
[2] Sudipto Ghosh, Robert France, Conrad Braganza, Nilesh Kawane. “Test Adequacy
Assessment for UML Design Model Testing”, 14th International Symposium on Software
Reliability Engineering (ISSRE 2003), pp.332-343; ISSN: 1071-9458, 2003
[3] D. Kundu, D. Samanta. “A Novel Approach to Generate Test Case from UML
Activity Diagrams”, Journal of Object Technology, Vol. 8 – No. 3, May-June 2009.
[4] S. K. Swain, D. P. Mohapatra. “Test case generation from UML sequence and activity
models.” International Journal of Computer Applications (0975-8887) Volume 6 – No. 8,
September 2010
[5] A.Abdurazik and J.Offutt, “Using UML Collaboration Diagrams for Static Checking
and Test Generation”, 3rd International Conference on the UML, pp.383-395, Oct, 2000.
[6] J. Offutt, Shaoying Liu, Aynur Abdurazik and Paul Ammann: “Generating test data
from state-based specifications”, Software Testing, Verification and Reliability Softw.
Test. Verif. Reliab. 2003; 13:25-53 (DOI:10.1002/STVR.264).
[7] A. J. Offutt and A. Irvine. “Testing Object-Oriented Software Using the Category-
Partition Method”. In Proceedings of the 17th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS USA) 1995, pages 293-304, Santa
Barbara, California, August 1995.
[8] The Object Management Group. OMG Unified Modeling Language Specification.
Version 2.0, OMG, 2004.

